
Matthias W Hentze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4322262/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights into RNA Biology from an Atlas of Mammalian mRNA-Binding Proteins. Cell, 2012, 149, 1393-1406.	13.5	1,765
2	Two to Tango: Regulation of Mammalian Iron Metabolism. Cell, 2010, 142, 24-38.	13.5	1,692
3	Balancing Acts. Cell, 2004, 117, 285-297.	13.5	1,544
4	A Novel Duodenal Iron-Regulated Transporter, IREG1, Implicated in the Basolateral Transfer of Iron to the Circulation. Molecular Cell, 2000, 5, 299-309.	4.5	1,294
5	A brave new world of RNA-binding proteins. Nature Reviews Molecular Cell Biology, 2018, 19, 327-341.	16.1	1,172
6	A Red Carpet for Iron Metabolism. Cell, 2017, 168, 344-361.	13.5	847
7	Molecular mechanisms of translational control. Nature Reviews Molecular Cell Biology, 2004, 5, 827-835.	16.1	824
8	A Perfect Message. Cell, 1999, 96, 307-310.	13.5	789
9	RNA-binding proteins in human genetic disease. Nature Reviews Genetics, 2021, 22, 185-198.	7.7	720
10	Starting at the Beginning, Middle, and End: Translation Initiation in Eukaryotes. Cell, 1997, 89, 831-838.	13.5	667
11	Systemic Iron Homeostasis and the Iron-Responsive Element/Iron-Regulatory Protein (IRE/IRP) Regulatory Network. Annual Review of Nutrition, 2008, 28, 197-213.	4.3	572
12	Nonsense-mediated decay approaches the clinic. Nature Genetics, 2004, 36, 801-808.	9.4	546
13	Comprehensive Identification of RNA-Binding Domains in Human Cells. Molecular Cell, 2016, 63, 696-710.	4.5	493
14	STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood, 2007, 109, 353-358.	0.6	485
15	mRNA Silencing in Erythroid Differentiation: hnRNP K and hnRNP E1 Regulate 15-Lipoxygenase Translation from the 3′ End. Cell, 1997, 89, 597-606.	13.5	467
16	The RNA-binding protein repertoire of embryonic stem cells. Nature Structural and Molecular Biology, 2013, 20, 1122-1130.	3.6	415
17	Circular RNAs: splicing's enigma variations. EMBO Journal, 2013, 32, 923-925.	3.5	412
18	The RNA-binding proteomes from yeast to man harbour conserved enigmRBPs. Nature Communications, 2015, 6, 10127.	5.8	385

#	Article	IF	CITATIONS
19	A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). Rna, 2006, 12, 913-920.	1.6	375
20	Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: Implications for regulation and cellular function. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12345-12350.	3.3	374
21	Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood, 2010, 116, 1574-1584.	0.6	364
22	Phosphorylation of hUPF1 Induces Formation of mRNA Surveillance Complexes Containing hSMG-5 and hSMG-7. Molecular Cell, 2003, 12, 1187-1200.	4.5	294
23	The Role of ABCE1 in Eukaryotic Posttermination Ribosomal Recycling. Molecular Cell, 2010, 37, 196-210.	4.5	290
24	The Human RNA-Binding Proteome and Its Dynamics during Translational Arrest. Cell, 2019, 176, 391-403.e19.	13.5	289
25	Exon-Junction Complex Components Specify Distinct Routes of Nonsense-Mediated mRNA Decay with Differential Cofactor Requirements. Molecular Cell, 2005, 20, 65-75.	4.5	277
26	Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature, 2007, 447, 875-878.	13.7	275
27	Regulatory defects in liver and intestine implicate abnormal hepcidin and Cybrd1 expression in mouse hemochromatosis. Nature Genetics, 2003, 34, 102-107.	9.4	274
28	Iron-dependent regulation of the divalent metal ion transporter. FEBS Letters, 2001, 509, 309-316.	1.3	269
29	Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. EMBO Journal, 2008, 27, 736-747.	3.5	269
30	ERK phosphorylation drives cytoplasmic accumulation of hnRNP-K and inhibition of mRNA translation. Nature Cell Biology, 2001, 3, 325-330.	4.6	267
31	Y14 and hUpf3b Form an NMD-Activating Complex. Molecular Cell, 2003, 11, 939-949.	4.5	258
32	Iron-regulatory proteins limit hypoxia-inducible factor-2α expression in iron deficiency. Nature Structural and Molecular Biology, 2007, 14, 420-426.	3.6	253
33	IRP-1 Binding to Ferritin mRNA Prevents the Recruitment of the Small Ribosomal Subunit by the Cap-Binding Complex eIF4F. Molecular Cell, 1998, 2, 383-388.	4.5	252
34	Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature, 1998, 392, 516-520.	13.7	251
35	Increased efficiency of mRNA 3′ end formation: a new genetic mechanism contributing to hereditary thrombophilia. Nature Genetics, 2001, 28, 389-392.	9.4	247
36	3′ end mRNA processing: molecular mechanisms and implications for health and disease. EMBO Journal, 2008, 27, 482-498.	3.5	246

#	Article	IF	CITATIONS
37	Lipoxygenase mRNA Silencing in Erythroid Differentiation. Cell, 2001, 104, 281-290.	13.5	229
38	The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. Journal of Clinical Investigation, 2011, 121, 1386-1396.	3.9	221
39	Metabolic Enzymes Enjoying New Partnerships as RNA-Binding Proteins. Trends in Endocrinology and Metabolism, 2015, 26, 746-757.	3.1	219
40	A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nature Structural and Molecular Biology, 2007, 14, 897-903.	3.6	218
41	Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins. Nature Methods, 2014, 11, 1064-1070.	9.0	218
42	RNA-binding proteins in Mendelian disease. Trends in Genetics, 2013, 29, 318-327.	2.9	211
43	c-Src-Mediated Phosphorylation of hnRNP K Drives Translational Activation of Specifically Silenced mRNAs. Molecular and Cellular Biology, 2002, 22, 4535-4543.	1.1	210
44	Bruno Acts as a Dual Repressor of oskar Translation, Promoting mRNA Oligomerization and Formation of Silencing Particles. Cell, 2006, 124, 521-533.	13.5	200
45	Altered body iron distribution and microcytosis in mice deficient in iron regulatory protein 2 (IRP2). Blood, 2005, 106, 2580-2589.	0.6	193
46	NMD: RNA biology meets human genetic medicine. Biochemical Journal, 2010, 430, 365-377.	1.7	192
47	Homology between IRE-BP, a regulatory RNA-binding protein, aconitase, and isopropylmalate isomerase. Nucleic Acids Research, 1991, 19, 1739-1740.	6.5	186
48	Picornavirus IRESes and the poly(A) tail jointly promote cap-independent translation in a mammalian cell-free system. Rna, 2000, 6, 1781-1790.	1.6	186
49	Starting the protein synthesis machine: eukaryotic translation initiation. BioEssays, 2003, 25, 1201-1211.	1.2	177
50	System-wide identification of RNA-binding proteins by interactome capture. Nature Protocols, 2013, 8, 491-500.	5.5	176
51	The IRP1-HIF-2α Axis Coordinates Iron and Oxygen Sensing with Erythropoiesis and Iron Absorption. Cell Metabolism, 2013, 17, 282-290.	7.2	174
52	Iron Regulatory Proteins Are Essential for Intestinal Function and Control Key Iron Absorption Molecules in the Duodenum. Cell Metabolism, 2008, 7, 79-85.	7.2	166
53	The hemochromatosis proteins HFE, TfR2, and HJV form a membrane-associated protein complex for hepcidin regulation. Journal of Hepatology, 2012, 57, 1052-1060.	1.8	166
54	Cytoplasmic regulatory functions of the KH-domain proteins hnRNPs K and E1/E2. Trends in Biochemical Sciences, 1998, 23, 409-411.	3.7	165

#	Article	IF	CITATIONS
55	Disassembly of Exon Junction Complexes by PYM. Cell, 2009, 137, 536-548.	13.5	162
56	Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. European Heart Journal, 2020, 41, 2681-2695.	1.0	162
57	Mouse brains deficient in H-ferritin have normal iron concentration but a protein profile of iron deficiency and increased evidence of oxidative stress. Journal of Neuroscience Research, 2003, 71, 46-63.	1.3	158
58	In Planta Determination of the mRNA-Binding Proteome of Arabidopsis Etiolated Seedlings. Plant Cell, 2016, 28, 2435-2452.	3.1	158
59	Differences in the Regulation of Iron Regulatory Protein-1 (IRP-1) by Extra- and Intracellular Oxidative Stress. Journal of Biological Chemistry, 1997, 272, 9802-9808.	1.6	154
60	Ca2+ channel blockers reverse iron overload by a new mechanism via divalent metal transporter-1. Nature Medicine, 2007, 13, 448-454.	15.2	145
61	A novel inflammatory pathway mediating rapid hepcidin-independent hypoferremia. Blood, 2015, 125, 2265-2275.	0.6	144
62	Translational regulation by mRNA/protein interactions in eukaryotic cells: Ferritin and beyond. BioEssays, 1993, 15, 85-90.	1.2	142
63	From factors to mechanisms: translation and translational control in eukaryotes. Current Opinion in Genetics and Development, 1999, 9, 515-521.	1.5	142
64	Recombinant iron-regulatory factor functions as an iron-responsive-element-binding protein, a translational repressor and an aconitase. A functional assay for translational repression and direct demonstration of the iron switch. FEBS Journal, 1993, 218, 657-667.	0.2	140
65	Hfe Acts in Hepatocytes to Prevent Hemochromatosis. Cell Metabolism, 2008, 7, 173-178.	7.2	139
66	Bone morphogenetic protein (BMP)-responsive elements located in the proximal and distal hepcidin promoter are critical for its response to HJV/BMP/SMAD. Journal of Molecular Medicine, 2009, 87, 471-480.	1.7	139
67	Homodirectional changes in transcriptome composition and mRNA translation induced by rapamycin and heat shock. Nature Structural and Molecular Biology, 2003, 10, 1039-1047.	3.6	138
68	Discovery of RNA-binding proteins and characterization of their dynamic responses by enhanced RNA interactome capture. Nature Communications, 2018, 9, 4408.	5.8	138
69	Mechanism of translational regulation by miR-2 from sites in the 5′ untranslated region or the open reading frame. Rna, 2010, 16, 2493-2502.	1.6	135
70	Global changes of the RNA-bound proteome during the maternal-to-zygotic transition in Drosophila. Nature Communications, 2016, 7, 12128.	5.8	134
71	Enzymes as RNA-binding proteins: a role for (di)nucleotide-binding domains?. Trends in Biochemical Sciences, 1994, 19, 101-103.	3.7	130
72	Condensation of Ded1p Promotes a Translational Switch from Housekeeping to Stress Protein Production. Cell, 2020, 181, 818-831.e19.	13.5	130

#	Article	IF	CITATIONS
73	The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease. Cell Reports, 2016, 16, 1456-1469.	2.9	128
74	A model for the structure and functions of iron-responsive elements. Gene, 1988, 72, 201-208.	1.0	126
75	miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nature Protocols, 2008, 3, 321-329.	5.5	126
76	Unusual bipartite mode of interaction between the nonsense-mediated decay factors, UPF1 and UPF2. EMBO Journal, 2009, 28, 2293-2306.	3.5	126
77	The Small Non-coding Vault RNA1-1 Acts as a Riboregulator of Autophagy. Cell, 2019, 176, 1054-1067.e12.	13.5	125
78	Coordmation of cellular iron metabolism by post-transcriptional gene regulation. Journal of Inorganic Biochemistry, 1992, 47, 183-195.	1.5	123
79	A bone morphogenetic protein (BMP)-responsive element in the hepcidin promoter controls HFE2-mediated hepatic hepcidin expression and its response to IL-6 in cultured cells. Journal of Molecular Medicine, 2008, 86, 531-540.	1.7	121
80	Iron Induces Anti-tumor Activity in Tumor-Associated Macrophages. Frontiers in Immunology, 2017, 8, 1479.	2.2	121
81	Mechanism of escape from nonsense-mediated mRNA decay of human β-globin transcripts with nonsense mutations in the first exon. Rna, 2011, 17, 843-854.	1.6	120
82	Determinants and regulation of cytoplasmic mRNA stability in eukaryotic cells. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1090, 281-292.	2.4	119
83	Translational Control via Protein-Regulated Upstream Open Reading Frames. Cell, 2011, 145, 902-913.	13.5	118
84	Iron-Mediated Degradation of IRP2, an Unexpected Pathway Involving a 2-Oxoglutarate-Dependent Oxygenase Activity. Molecular and Cellular Biology, 2004, 24, 954-965.	1.1	117
85	Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. European Heart Journal, 2016, 38, ehw333.	1.0	115
86	The Hierarchy of Exon-Junction Complex Assembly by the Spliceosome Explains Key Features of Mammalian Nonsense-Mediated mRNA Decay. PLoS Biology, 2009, 7, e1000120.	2.6	114
87	Functions of hUpf3a and hUpf3b in nonsense-mediated mRNA decay and translation. Rna, 2006, 12, 1015-1022.	1.6	112
88	SMAD7 controls iron metabolism as a potent inhibitor of hepcidin expression. Blood, 2010, 115, 2657-2665.	0.6	112
89	Iron Regulatory Proteins Secure Mitochondrial Iron Sufficiency and Function. Cell Metabolism, 2010, 12, 194-201.	7.2	110
90	Poly(A)-tail-promoted translation in yeast: Implications for translational control. Rna, 1998, 4, 1321-1331.	1.6	108

#	Article	IF	CITATIONS
91	An Hfe-dependent pathway mediates hyposideremia in response to lipopolysaccharide-induced inflammation in mice. Nature Genetics, 2004, 36, 481-485.	9.4	108
92	Iron regulatory protein-1 and -2: transcriptome-wide definition of binding mRNAs and shaping of the cellular proteome by iron regulatory proteins. Blood, 2011, 118, e168-e179.	0.6	108
93	The abundance of RNPS1, a protein component of the exon junction complex, can determine the variability in efficiency of the Nonsense Mediated Decay pathway. Nucleic Acids Research, 2007, 35, 4542-4551.	6.5	107
94	Ferritin-Mediated Iron Sequestration Stabilizes Hypoxia-Inducible Factor-1α upon LPS Activation in the Presence of Ample Oxygen. Cell Reports, 2015, 13, 2048-2055.	2.9	106
95	Human Cytoplasmic Aconitase (Iron Regulatory Protein 1) Is Converted into Its [3Fe-4S] Form by Hydrogen Peroxide in Vitro but Is Not Activated for Iron-responsive Element Binding. Journal of Biological Chemistry, 1999, 274, 21625-21630.	1.6	104
96	Iron Regulation and the Cell Cycle. Journal of Biological Chemistry, 2006, 281, 22865-22874.	1.6	103
97	The REM phase of gene regulation. Trends in Biochemical Sciences, 2010, 35, 423-426.	3.7	101
98	PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding. Nature Structural and Molecular Biology, 2012, 19, 603-608.	3.6	100
99	Resistance of Ferroportin to Hepcidin Binding causes Exocrine Pancreatic Failure and Fatal Iron Overload. Cell Metabolism, 2014, 20, 359-367.	7.2	98
100	Pathologies at the nexus of blood coagulation and inflammation: thrombin in hemostasis, cancer, and beyond. Journal of Molecular Medicine, 2013, 91, 1257-1271.	1.7	97
101	A Dual Inhibitory Mechanism Restricts msl-2 mRNA Translation for Dosage Compensation in Drosophila. Cell, 2005, 122, 529-540.	13.5	96
102	Iron Inactivates the RNA Polymerase NS5B and Suppresses Subgenomic Replication of Hepatitis C Virus. Journal of Biological Chemistry, 2005, 280, 9049-9057.	1.6	95
103	Using the λN Peptide to Tether Proteins to RNAs. , 2004, 257, 135-154.		92
104	Iron Regulatory Proteins Mediate Host Resistance to Salmonella Infection. Cell Host and Microbe, 2015, 18, 254-261.	5.1	92
105	microRNA-Mediated Messenger RNA Deadenylation Contributes to Translational Repression in Mammalian Cells. PLoS ONE, 2009, 4, e6783.	1.1	89
106	Dual function of UPF3B in early and late translation termination. EMBO Journal, 2017, 36, 2968-2986.	3.5	89
107	Identification of RNA-binding Proteins in Macrophages by Interactome Capture. Molecular and Cellular Proteomics, 2016, 15, 2699-2714.	2.5	88
108	The Yeast Nuclear Cap Binding Complex Can Interact with Translation Factor eIF4G and Mediate Translation Initiation. Molecular Cell, 2000, 6, 191-196.	4.5	87

#	Article	IF	CITATIONS
109	Enhancement of IRES-Mediated Translation of the c-myc and BiP mRNAs by the Poly(A) Tail Is Independent of Intact eIF4G and PABP. Molecular Cell, 2004, 15, 925-935.	4.5	86
110	Eukaryotic translation initiation factor 4GI and p97 promote cellular internal ribosome entry sequence-driven translation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13421-13426.	3.3	85
111	Translational activation of uncapped mRNAs by the central part of human eIF4G is 5′ end-dependent. Rna, 1998, 4, 828-836.	1.6	82
112	Iron Regulatory Proteins Control a Mucosal Block to Intestinal Iron Absorption. Cell Reports, 2013, 3, 844-857.	2.9	81
113	Integration of splicing, transport and translation to achieve mRNA quality control by the nonsense-mediated decay pathway. Genome Biology, 2002, 3, reviews1006.1.	13.9	80
114	From Cis-Regulatory Elements to Complex RNPs and Back. Cold Spring Harbor Perspectives in Biology, 2012, 4, a012245-a012245.	2.3	80
115	IRP1 Activation by Extracellular Oxidative Stress in the Perfused Rat Liver. Journal of Biological Chemistry, 2001, 276, 23192-23196.	1.6	79
116	SIREs: searching for iron-responsive elements. Nucleic Acids Research, 2010, 38, W360-W367.	6.5	79
117	Sex-lethal imparts a sex-specific function to UNR by recruiting it to the msl-2 mRNA 3' UTR: translational repression for dosage compensation. Genes and Development, 2006, 20, 368-379.	2.7	78
118	FASTKD2 is an RNA-binding protein required for mitochondrial RNA processing and translation. Rna, 2015, 21, 1873-1884.	1.6	78
119	Splicing factors stimulate polyadenylation via USEs at non-canonical 3′ end formation signals. EMBO Journal, 2007, 26, 2658-2669.	3.5	75
120	Drosophila miR2 Primarily Targets the m7GpppN Cap Structure for Translational Repression. Molecular Cell, 2009, 35, 881-888.	4.5	74
121	Insights into the design and interpretation of iCLIP experiments. Genome Biology, 2017, 18, 7.	3.8	73
122	Abnormally spliced β-globin mRNAs: a single point mutation generates transcripts sensitive and insensitive to nonsense-mediated mRNA decay. Blood, 2002, 99, 1811-1816.	0.6	72
123	Translational regulation: versatile mechanisms for metabolic and developmental control. Current Opinion in Cell Biology, 1995, 7, 393-398.	2.6	71
124	The SXL-UNR Corepressor Complex Uses a PABP-Mediated Mechanism to Inhibit Ribosome Recruitment to msl-2 mRNA. Molecular Cell, 2009, 36, 571-582.	4.5	70
125	p38 MAPK Controls Prothrombin Expression by Regulated RNA 3′ End Processing. Molecular Cell, 2011, 41, 298-310.	4.5	70
126	The prothrombin 3′end formation signal reveals a unique architecture that is sensitive to thrombophilic gain-of-function mutations. Blood, 2004, 104, 428-435.	0.6	69

#	Article	IF	CITATIONS
127	Nuclear degradation of nonsense mutated β-globin mRNA: a post-transcriptional mechanism to protect heterozygotes from severe clinical manifestations of β-thalassemia?. Nucleic Acids Research, 1995, 23, 413-418.	6.5	68
128	Physiologic systemic iron metabolism in mice deficient for duodenal Hfe. Blood, 2007, 109, 4511-4517.	0.6	68
129	The human intronless melanocortin 4-receptor gene is NMD insensitive. Human Molecular Genetics, 2002, 11, 331-335.	1.4	67
130	Drosophila Sex-Lethal Inhibits the Stable Association of the 40S Ribosomal Subunit with msl-2 mRNA. Molecular Cell, 2003, 11, 1397-1404.	4.5	66
131	Iron-sulphur clusters as genetic regulatory switches: the bifunctional iron regulatory protein-1. FEBS Letters, 1996, 389, 40-43.	1.3	65
132	Inactivation of Both RNA Binding and Aconitase Activities of Iron Regulatory Protein-1 by Quinone-induced Oxidative Stress. Journal of Biological Chemistry, 1999, 274, 6219-6225.	1.6	65
133	miChip: A microarray platform for expression profiling of microRNAs based on locked nucleic acid (LNA) oligonucleotide capture probes. Methods, 2007, 43, 146-152.	1.9	65
134	Exon Junction Complexes Show a Distributional Bias toward Alternatively Spliced mRNAs and against mRNAs Coding for Ribosomal Proteins. Cell Reports, 2016, 16, 1588-1603.	2.9	65
135	Nonsense-mediated mRNA decay: from vacuum cleaner to Swiss army knife. Genome Biology, 2004, 5, 218.	13.9	64
136	Finding the hairpin in the haystack: searching for RNA motifs. Trends in Genetics, 1995, 11, 45-50.	2.9	63
137	Target-specific arrest of mRNA tranlation by antisense 2′-O-alkyloligoribonucleotides. Nucleic Acids Research, 1994, 22, 4591-4598.	6.5	62
138	Unbiased RNAi screen for hepcidin regulators links hepcidin suppression to proliferative Ras/RAF and nutrient-dependent mTOR signaling. Blood, 2014, 123, 1574-1585.	0.6	62
139	Bacteriophage and spliceosomal proteins function as position-dependentcis/transrepressors of mRNA translationin vitro. Nucleic Acids Research, 1992, 20, 5555-5564.	6.5	61
140	Iron overload in adult Hfe-deficient mice independent of changes in the steady-state expression of the duodenal iron transporters DMT1 and Ireg1/ferroportin. Journal of Molecular Medicine, 2004, 82, 39-48.	1.7	61
141	Iron Regulatory Protein 1 Sustains Mitochondrial Iron Loading and Function in Frataxin Deficiency. Cell Metabolism, 2015, 21, 311-323.	7.2	61
142	Iron homeostasis in the brain: complete iron regulatory protein 2 deficiency without symptomatic neurodegeneration in the mouse. Nature Genetics, 2006, 38, 967-969.	9.4	58
143	Relationships and distinctions in iron-regulatory networks responding to interrelated signals. Blood, 2003, 101, 3690-3698.	0.6	57
144	Ribosomal Pausing and Scanning Arrest as Mechanisms of Translational Regulation from Cap-Distal Iron-Responsive Elements. Molecular and Cellular Biology, 1999, 19, 807-816.	1.1	55

#	Article	IF	CITATIONS
145	A chemiluminescence-based reporter system to monitor nonsense-mediated mRNA decay. Biochemical and Biophysical Research Communications, 2006, 349, 186-191.	1.0	55
146	Complex translational regulation of BACE1 involves upstream AUGs and stimulatory elements within the 5' untranslated region. Nucleic Acids Research, 2007, 35, 2975-2985.	6.5	55
147	The RNA-binding protein YBX1 regulates epidermal progenitors at a posttranscriptional level. Nature Communications, 2018, 9, 1734.	5.8	55
148	Comprehensive Identification of RNA-Binding Proteins by RNA Interactome Capture. Methods in Molecular Biology, 2016, 1358, 131-139.	0.4	53
149	Conservation of Aconitase Residues Revealed by Multiple Sequence Analysis. Implications for Structure/Function Relationships. FEBS Journal, 1996, 239, 197-200.	0.2	52
150	Iron-regulatory protein-1 (IRP-1) is highly conserved in two invertebrate species. Characterization of IRP-1 homologues in Drosophila melanogaster and Caenorhabditis elegans. FEBS Journal, 1998, 254, 230-237.	0.2	51
151	5â€azacytidine inhibits nonsenseâ€mediated decay in a <scp>MYC</scp> â€dependent fashion. EMBO Molecular Medicine, 2014, 6, 1593-1609.	3.3	51
152	A network of SMG-8, SMG-9 and SMG-1 C-terminal insertion domain regulates UPF1 substrate recruitment and phosphorylation. Nucleic Acids Research, 2015, 43, 7600-7611.	6.5	51
153	An efficient factor-depleted mammalian in vitro translation system. Nature Protocols, 2011, 6, 563-571.	5.5	50
154	Silica-based solid-phase extraction of cross-linked nucleic acid–bound proteins. Life Science Alliance, 2018, 1, e201800088.	1.3	49
155	Targeted mutagenesis of the murine IRP1 and IRP2 genes reveals context-dependent RNA processing differences in vivo. Rna, 2004, 10, 1019-1025.	1.6	47
156	The RNA-Binding Protein YBX3 Controls Amino Acid Levels by Regulating SLC mRNA Abundance. Cell Reports, 2019, 27, 3097-3106.e5.	2.9	47
157	A co-repressor assembly nucleated by Sex-lethal in the 3'UTR mediates translational control of Drosophila msl-2 mRNA. EMBO Journal, 2003, 22, 5571-5581.	3.5	45
158	Anti-hemojuvelin antibody corrects anemia caused by inappropriately high hepcidin levels. Haematologica, 2016, 101, e173-e176.	1.7	44
159	Generation of conditional alleles of the murineiron regulatory protein (IRP)-1 and -2 genes. Genesis, 2005, 43, 181-188.	0.8	43
160	Translationaj repression by the human iron-regulatory factor (IRF) in Saccharomyces cerevisiae. Nucleic Acids Research, 1993, 21, 5316-5322.	6.5	42
161	Cell-autonomous and systemic context-dependent functions of iron regulatory protein 2 in mammalian iron metabolism. Blood, 2009, 113, 679-687.	0.6	42
162	The uORF-containing thrombopoietin mRNA escapes nonsense-mediated decay (NMD). Nucleic Acids Research, 2006, 34, 2355-2363.	6.5	41

#	Article	IF	CITATIONS
163	Specific RNP capture with antisense LNA/DNA mixmers. Rna, 2017, 23, 1290-1302.	1.6	41
164	Chromosomal localization of nucleic acid-binding proteins by affinity mapping: assignment of the IRE-binding protein gene to human chromosome 9. Nucleic Acids Research, 1989, 17, 6103-6108.	6.5	40
165	Generation of Stable mRNA Fragments and Translation of N-Truncated Proteins Induced by Antisense Oligodeoxynucleotides. Molecular Cell, 2001, 8, 865-872.	4.5	40
166	Plasticity of nuclear and cytoplasmic stress responses of RNA-binding proteins. Nucleic Acids Research, 2020, 48, 4725-4740.	6.5	40
167	Molecular analysis of iron overload in β2-microglobulin-deficient mice. Blood Cells, Molecules, and Diseases, 2004, 33, 125-131.	0.6	39
168	Expression of the subgenomic hepatitis C virus replicon alters iron homeostasis in Huh7 cells. Journal of Hepatology, 2007, 47, 12-22.	1.8	38
169	<scp>mRNA</scp> 3′end processing: A tale of the tail reaches the clinic. EMBO Molecular Medicine, 2014, 6, 16-26.	3.3	38
170	Riboregulation of Enolase 1 activity controls glycolysis and embryonic stem cell differentiation. Molecular Cell, 2022, 82, 2666-2680.e11.	4.5	37
171	Tethered-function analysis reveals that eIF4E can recruit ribosomes independent of its binding to the cap structure. Rna, 2001, 7, 106-113.	1.6	36
172	The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion. Rna, 2016, 22, 1441-1453.	1.6	36
173	Iron Regulatory Protein-1 Protects against Mitoferrin-1-deficient Porphyria. Journal of Biological Chemistry, 2014, 289, 7835-7843.	1.6	34
174	A versatile assay for RNA-binding proteins in living cells. Rna, 2014, 20, 721-731.	1.6	33
175	Complexes between the nonsense-mediated mRNA decay pathway factor human upf1 (up-frameshift) Tj ETQq1 2 2003, 373, 775-783.	0.784314 1.7	ł rgBT /Overl 32
176	Improved binding site assignment by high-resolution mapping of RNA–protein interactions using iCLIP. Nature Communications, 2015, 6, 7921.	5.8	32
177	Mice with hepcidinâ€resistant ferroportin accumulate iron in the retina. FASEB Journal, 2016, 30, 813-823.	0.2	32
178	Identification of RNA-binding domains of RNA-binding proteins in cultured cells on a system-wide scale with RBDmap. Nature Protocols, 2017, 12, 2447-2464.	5.5	32
179	3′ End Processing of the Prothrombin mRNA in Thrombophilia. Acta Haematologica, 2006, 115, 192-197.	0.7	31
180	Global analysis of RNA-binding protein dynamics by comparative and enhanced RNA interactome capture. Nature Protocols, 2021, 16, 27-60.	5.5	31

#	Article	IF	CITATIONS
181	Systems analysis of iron metabolism: the network of iron pools and fluxes. BMC Systems Biology, 2010, 4, 112.	3.0	30
182	Characterization of the African Swine Fever Virus Decapping Enzyme during Infection. Journal of Virology, 2017, 91, .	1.5	29
183	Proteomic Analysis Reveals Branch-specific Regulation of the Unfolded Protein Response by Nonsense-mediated mRNA Decay. Molecular and Cellular Proteomics, 2016, 15, 1584-1597.	2.5	28
184	â€~High vault-age': non-coding RNA control of autophagy. Open Biology, 2020, 10, 190307.	1.5	28
185	The actin-binding protein profilin 2 is a novel regulator of iron homeostasis. Blood, 2017, 130, 1934-1945.	0.6	26
186	Ligand-induced Structural Alterations in Human Iron Regulatory Protein-1 Revealed by Protein Footprinting. Journal of Biological Chemistry, 1999, 274, 15052-15058.	1.6	25
187	IRP1-independent alterations of cardiac iron metabolism in doxorubicin-treated mice. Journal of Molecular Medicine, 2006, 84, 551-560.	1.7	25
188	A Poly(A) Tail-Responsive In Vitro System for Cap- or IRES-Driven Translation From HeLa Cells. , 2004, 257, 171-180.		24
189	Expression of epithelial cell iron-related genes upon infection by Neisseria meningitidis. Cellular Microbiology, 2004, 6, 473-484.	1.1	24
190	Construction of regulatable picornavirus IRESes as a test of current models of the mechanism of internal translation initiation. Rna, 2001, 7, 647-660.	1.6	23
191	The interaction of the cap-binding complex (CBC) with eIF4G is dispensable for translation in yeast. Rna, 2003, 9, 654-662.	1.6	23
192	NMD inhibition by 5-azacytidine augments presentation of immunogenic frameshift-derived neoepitopes. IScience, 2021, 24, 102389.	1.9	22
193	Translation initiation by the c-myc mRNA internal ribosome entry sequence and the poly(A) tail. Rna, 2008, 14, 1579-1589.	1.6	21
194	Internal ribosome entry sequenceâ€mediated translation initiation triggers nonsenseâ€mediated decay. EMBO Reports, 2006, 7, 722-726.	2.0	19
195	Identification of dynamic RNA-binding proteins uncovers a Cpeb4-controlled regulatory cascade during pathological cell growth of cardiomyocytes. Cell Reports, 2021, 35, 109100.	2.9	19
196	Iron-sulfur clusters and oxidant stress responses. Trends in Biochemical Sciences, 1996, 21, 282-283.	3.7	17
197	The Role of the 5′ Untranslated Region of Eukaryotic Messenger RNAs in Translation and Its Investigation Using Antisense Technologies. Progress in Molecular Biology and Translational Science, 1994, 48, 181-238.	1.9	16
198	The Molecular Circuitry Regulating the Switch between Iron Deficiency and Overload in Mice. Journal of Biological Chemistry, 2006, 281, 7946-7951.	1.6	15

#	Article	IF	CITATIONS
199	Chapter 23 Tethering Assays to Investigate Nonsenseâ€Mediated mRNA Decay Activating Proteins. Methods in Enzymology, 2008, 448, 467-482.	0.4	15
200	Novel functions for `nuclear factors' in the cytoplasm: theSex-lethalparadigm. Seminars in Cell and Developmental Biology, 1997, 8, 561-566.	2.3	14
201	Tolerable upper intakes for dietary iron set by the US Food and Nutrition Board. American Journal of Clinical Nutrition, 2002, 76, 499-500.	2.2	14
202	Nitric Oxide, Oxygen Radicals, and Iron Metabolism. , 2000, , 293-313.		13
203	Abnormal body iron distribution and erythropoiesis in a novel mouse model with inducible gain of iron regulatory protein (IRP)-1 function. Journal of Molecular Medicine, 2013, 91, 871-881.	1.7	13
204	Blasticidin S inhibits mammalian translation and enhances production of protein encoded by nonsense mRNA. Nucleic Acids Research, 2021, 49, 7665-7679.	6.5	13
205	Core Crossâ€Linked Polymeric Micelles for Specific Iron Delivery: Inducing Sterile Inflammation in Macrophages. Advanced Healthcare Materials, 2021, 10, e2100385.	3.9	13
206	Studying Translational Control in Drosophila Cell-Free Systems. Methods in Enzymology, 2007, 429, 23-33.	0.4	12
207	Identification of target mRNAs of regulatory RNA-binding proteins using mRNP immunopurification and microarrays. Nature Protocols, 2007, 2, 2033-2042.	5.5	10
208	In vivo role(s) of the iron regulatory proteins (IRP) 1 and 2 in aseptic local inflammation. Journal of Molecular Medicine, 2009, 87, 913-921.	1.7	10
209	Making sense of nonsense. Nature Structural and Molecular Biology, 2013, 20, 651-653.	3.6	10
210	Vault RNA emerges as a regulator of selective autophagy. Autophagy, 2019, 15, 1463-1464.	4.3	10
211	A Genetically Encoded Diazirine Analogue for RNA–Protein Photoâ€crosslinking. ChemBioChem, 2020, 21, 88-93.	1.3	10
212	Translational Control by Iron-Responsive Elements. Advances in Experimental Medicine and Biology, 1994, 356, 119-126.	0.8	10
213	IRES unplugged. Science, 2016, 351, 228-228.	6.0	9
214	Vault RNA1–1 riboregulates the autophagic function of p62 by binding to lysine 7 and arginine 21, both of which are critical for p62 oligomerization. Rna, 2022, 28, 742-755.	1.6	9
215	Automated High-Throughput RNAi Screening in Human Cells Combined with Reporter mRNA Transfection to Identify Novel Regulators of Translation. PLoS ONE, 2012, 7, e45943.	1.1	8
216	Cellular citrate levels establish a regulatory link between energy metabolism and the hepatic iron hormone hepcidin. Journal of Molecular Medicine, 2017, 95, 851-860.	1.7	8

#	Article	IF	CITATIONS
217	Constitutional PICA mutations cause a novel subtype of hemochromatosis in patients with neurologic dysfunction. Blood, 2022, 139, 1418-1422.	0.6	8
218	Translational Regulation of Ferritin Biosynthesis by Iron: A Review. Current Studies in Hematology and Blood Transfusion, 1991, 58, 115-126.	0.2	7
219	Stimulation of IRE-BP Activity of IRF by Tetrahydrobiopterin and Cytokine Dependent Induction of Nitric Oxide Synthase. Advances in Experimental Medicine and Biology, 1994, 356, 133-139.	0.8	7
220	Is congenital secondary erythrocytosis/polycythemia caused by activating mutations within the HIF-2α iron-responsive element?. Blood, 2007, 110, 2776-2777.	0.6	5
221	Targeted Disruption of the Mouse Mitoferrin (Slc25A37) Mitochondrial Solute Carrier Results in Defective Primitive and Definitive Erythropoiesis Blood, 2006, 108, 265-265.	0.6	5
222	[25] Translational repression assay procedure: A method to study RNA-protein interactions in yeast. Methods in Enzymology, 2000, 318, 374-384.	0.4	4
223	Fertility Facts. Molecular Cell, 2001, 8, 247-249.	4.5	4
224	The IronChip evaluation package: a package of perl modules for robust analysis of custom microarrays. BMC Bioinformatics, 2010, 11, 112.	1.2	4
225	Elisa Izaurralde 1959–2018. Nature Structural and Molecular Biology, 2018, 25, 547-547.	3.6	2
226	Low-Iron Diet and Chelation Therapy Rescue Severe Atherosclerosis Associated with High Circulating Iron Levels. Blood, 2016, 128, 199-199.	0.6	2
227	Low-iron diet and chelation therapy rescue severe atherosclerosis associated with high circulating iron levels. Atherosclerosis, 2017, 263, e15-e16.	0.4	1
228	Hfe Acts in Hepatocytes To Prevent Hemochromatosis Blood, 2007, 110, 703-703.	0.6	1
229	Post-Transcriptional Regulation of Gene Expression by Iron. , 1995, , 241-265.		1
230	Sensing of Liver Iron Content Requires Cell-Cell Communication between Hepatocytes and Liver Sinusoidal Endothelial Cells. Blood, 2019, 134, 432-432.	0.6	1
231	Complex formation between a cytoplasmic protein and the ferritin mRNA regulates translation initiation. Molecular Biology Reports, 1990, 14, 61-61.	1.0	0
232	The role of nonsense-mediated decay in physiological and pathological processes. , 2005, , .		0
233	EMBO Molecular Medicine: Conquering new frontiers. EMBO Molecular Medicine, 2009, 1, 5-5.	3.3	0
234	The Prothrombin C>T Mutation at Position 20209 (F2 20209*T) Promotes 3′end mRNA Processing and Thus Contributes to Thrombophilia through Gain-of-Function Blood, 2005, 106, 2145-2145.	0.6	0

#	Article	IF	CITATIONS
235	The Molecular Signature of Iron Metabolism in Polycythaemia Mice Blood, 2005, 106, 3579-3579.	0.6	О
236	The Physiology of Prothrombin Gene Expression Integrates RNA Polyadenylation and Splicing in a Novel Regulatable 3′ RNP-Complex Blood, 2006, 108, 1601-1601.	0.6	0
237	A Closer Look at Cellular Iron Metabolism in IRP2 Deficient Erythroblasts Blood, 2008, 112, 3843-3843.	0.6	0
238	Iron Regulatory Proteins in Systemic Iron Metabolism and Erythropoiesis. Blood, 2011, 118, SCI-22-SCI-22.	0.6	0
239	Translational Control in Eukaryotic Cells: Principles Learned from the IRE/IRF System. , 1996, , 125-133.		Ο
240	An Inflammatory Pathway Mediating Rapid Hepcidin-Independent Hypoferremia. Blood, 2014, 124, 214-214.	0.6	0
241	Profilin2 Is Controlled By the Iron Regulatory Proteins and Modulates Iron Homeostasis. Blood, 2014, 124, 749-749.	0.6	0