Su-Jae Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4322113/publications.pdf

Version: 2024-02-01

68 papers	2,458 citations	186265 28 h-index	214800 47 g-index
рирего	Citations	II IIIQCX	5 macx
68 all docs	68 docs citations	68 times ranked	3926 citing authors

#	Article	IF	CITATIONS
1	Biological and medical applications of plasma-activated media, water and solutions. Biological Chemistry, 2018, 400, 39-62.	2.5	227
2	Caspase-Independent Cell Death by Arsenic Trioxide in Human Cervical Cancer Cells. Cancer Research, 2004, 64, 8960-8967.	0.9	181
3	Suppression of Extracellular Signal-related Kinase and Activation of p38 MAPK Are Two Critical Events Leading to Caspase-8- and Mitochondria-mediated Cell Death in Phytosphingosine-treated Human Cancer Cells. Journal of Biological Chemistry, 2003, 278, 50624-50634.	3.4	114
4	The role of p38 MAPK and JNK in Arsenic trioxideâ€induced mitochondrial cell death in human cervical cancer cells. Journal of Cellular Physiology, 2008, 217, 23-33.	4.1	94
5	Plasma and Nanomaterials: Fabrication and Biomedical Applications. Nanomaterials, 2019, 9, 98.	4.1	92
6	Activation of Bak and Bax through c-Abl-Protein Kinase Cδ-p38 MAPK Signaling in Response to Ionizing Radiation in Human Non-small Cell Lung Cancer Cells. Journal of Biological Chemistry, 2006, 281, 7049-7059.	3.4	83
7	Reactive Oxygen Species-Dependent Activation of Bax and Poly(ADP-ribose) Polymerase-1 Is Required for Mitochondrial Cell Death Induced by Triterpenoid Pristimerin in Human Cervical Cancer Cells. Molecular Pharmacology, 2009, 76, 734-744.	2.3	82
8	Clogging-free microfluidics for continuous size-based separation of microparticles. Scientific Reports, 2016, 6, 26531.	3.3	75
9	Radiation driven epithelial-mesenchymal transition is mediated by Notch signaling in breast cancer. Oncotarget, 2016, 7, 53430-53442.	1.8	64
10	Cold atmospheric plasma and silymarin nanoemulsion synergistically inhibits human melanoma tumorigenesis via targeting HGF/c-MET downstream pathway. Cell Communication and Signaling, 2019, 17, 52.	6.5	58
11	Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells. Toxicology and Applied Pharmacology, 2011, 254, 32-40.	2.8	57
12	Preventing the Solid Cancer Progression via Release of Anticancer-Cytokines in Co-Culture with Cold Plasma-Stimulated Macrophages. Cancers, 2019, 11, 842.	3.7	56
13	Enhancement of radiation response in human cervical cancer cells in vitro and in vivo by arsenic trioxide (As2O3). FEBS Letters, 2002, 519, 195-200.	2.8	55
14	Radiation promotes malignant progression of glioma cells through HIF-1alpha stabilization. Cancer Letters, 2014, 354, 132-141.	7.2	53
15	Phloroglucinol suppresses metastatic ability of breast cancer cells by inhibition of epithelialâ€mesenchymal cell transition. Cancer Science, 2015, 106, 94-101.	3.9	53
16	Isolation of glioma cancer stem cells in relation to histological grades in glioma specimens. Child's Nervous System, 2013, 29, 217-229.	1.1	51
17	Doxycycline Enhances Survival and Self-Renewal of Human Pluripotent Stem Cells. Stem Cell Reports, 2014, 3, 353-364.	4.8	50
18	FYN promotes mesenchymal phenotypes of basal type breast cancer cells through STAT5/NOTCH2 signaling node. Oncogene, 2018, 37, 1857-1868.	5.9	49

#	Article	IF	CITATIONS
19	lonizing radiation can overcome resistance to TRAIL in TRAIL-resistant cancer cells. FEBS Letters, 2001, 505, 179-184.	2.8	45
20	The small GTPase Rac1 is involved in the maintenance of stemness and malignancies in glioma stem-like cells. FEBS Letters, 2011, 585, 2331-2338.	2.8	45
21	Importance of PKCδ signaling in fractionated-radiation-induced expansion of glioma-initiating cells and resistance to cancer treatment. Journal of Cell Science, 2011, 124, 3084-3094.	2.0	44
22	Novel anticancer activity of phloroglucinol against breast cancer stem-like cells. Toxicology and Applied Pharmacology, 2015, 286, 143-150.	2.8	43
23	Fractionated radiationâ€induced nitric oxide promotes expansion of glioma stemâ€like cells. Cancer Science, 2013, 104, 1172-1177.	3.9	41
24	Proinvasive extracellular matrix remodeling in tumor microenvironment in response to radiation. Oncogene, 2018, 37, 3317-3328.	5.9	38
25	Continuous Separation of Circulating Tumor Cells from Whole Blood Using a Slanted Weir Microfluidic Device. Cancers, 2019, $11,200.$	3.7	36
26	Crosstalk between GBM cells and mesenchymal stemlike cells promotes the invasiveness of GBM through the C5a/p38/ZEB1 axis. Neuro-Oncology, 2020, 22, 1452-1462.	1.2	32
27	Increased in vivo angiogenic effect of glioma stromal mesenchymal stem-like cells on glioma cancer stem cells from patients with glioblastoma. International Journal of Oncology, 2013, 42, 1754-1762.	3.3	30
28	Proinvasive extracellular matrix remodeling for tumor progression. Archives of Pharmacal Research, 2019, 42, 40-47.	6.3	30
29	Functional characterization of P-glycoprotein in the intertidal copepod Tigriopus japonicus and its potential role in remediating metal pollution. Aquatic Toxicology, 2014, 156, 135-147.	4.0	29
30	Hollow hyaluronic acid particles by competition between adhesive and cohesive properties of catechol for anticancer drug carrier. Carbohydrate Polymers, 2017, 164, 309-316.	10.2	28
31	Triterpenoid pristimerin synergizes with taxol to induce cervical cancer cell death through reactive oxygen species-mediated mitochondrial dysfunction. Anti-Cancer Drugs, 2011, 22, 763-773.	1.4	26
32	Existence of glioma stroma mesenchymal stemlike cells in Korean glioma specimens. Child's Nervous System, 2013, 29, 549-563.	1.1	26
33	Melanoma Growth Analysis in Blood Serum and Tissue Using Xenograft Model with Response to Cold Atmospheric Plasma Activated Medium. Applied Sciences (Switzerland), 2019, 9, 4227.	2.5	26
34	Presence of glioma stroma mesenchymal stem cells in a murine orthotopic glioma model. Child's Nervous System, 2011, 27, 911-922.	1.1	24
35	Low-dose radiation decreases tumor progression via the inhibition of the JAK1/STAT3 signaling axis in breast cancer cell lines. Scientific Reports, 2017, 7, 43361.	3.3	21
36	Beneficial effects of low dose radiation in response to the oncogenic KRAS induced cellular transformation. Scientific Reports, 2015, 5, 15809.	3.3	20

#	Article	IF	CITATIONS
37	Tumor Mesenchymal Stem-Like Cell as a Prognostic Marker in Primary Glioblastoma. Stem Cells International, 2016, 2016, 1-7.	2.5	20
38	Hyaluronic acid synthase 2 promotes malignant phenotypes of colorectal cancer cells through transforming growth factor beta signaling. Cancer Science, 2019, 110, 2226-2236.	3.9	20
39	Force-mediated proinvasive matrix remodeling driven by tumor-associated mesenchymal stem-like cells in glioblastoma. BMB Reports, 2018, 51, 182-187.	2.4	20
40	Identification of ultraviolet B radiation-induced microRNAs in normal human dermal papilla cells. Molecular Medicine Reports, 2014, 10, 1663-1670.	2.4	19
41	Prognostic Value of Glioma Cancer Stem Cell Isolation in Survival of Primary Glioblastoma Patients. Stem Cells International, 2014, 2014, 1-6.	2.5	18
42	MerTK mediates STAT3–KRAS/SRC-signaling axis for glioma stem cell maintenance. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 87-95.	2.8	18
43	FBXL14 abolishes breast cancer progression by targeting CDCP1 for proteasomal degradation. Oncogene, 2018, 37, 5794-5809.	5.9	18
44	A Feedback Loop Comprising EGF/TGFα Sustains TFCP2-Mediated Breast Cancer Progression. Cancer Research, 2020, 80, 2217-2229.	0.9	18
45	Regulation of FBXO4-mediated ICAM-1 protein stability in metastatic breast cancer. Oncotarget, 2017, 8, 83100-83113.	1.8	18
46	Failure of a patient-derived xenograft for brain tumor model prepared by implantation of tissue fragments. Cancer Cell International, 2016, 16, 43.	4.1	17
47	Suppression of breast cancer progression by FBXL16 via oxygen-independent regulation of HIF1α stability. Cell Reports, 2021, 37, 109996.	6.4	16
48	Isolation of tumor spheres and mesenchymal stem-like cells from a single primitive neuroectodermal tumor specimen. Child's Nervous System, 2013, 29, 2229-2239.	1.1	14
49	Photoprotective effect of arctiin against ultraviolet B-induced damage in HaCaT keratinocytes is mediated by microRNA expression changes. Molecular Medicine Reports, 2014, 10, 1363-1370.	2.4	14
50	KRAS-driven ROS promote malignant transformation. Molecular and Cellular Oncology, 2015, 2, e968059.	0.7	14
51	ICAM-1 promotes cancer progression by regulating SRC activity as an adapter protein in colorectal cancer. Cell Death and Disease, 2022, 13, 417.	6.3	12
52	Activation of Lck is critically required for sphingosine-induced conformational activation of Bak and mitochondrial cell death. Biochemical and Biophysical Research Communications, 2008, 370, 353-358.	2.1	11
53	Changes in the biological characteristics of glioma cancer stem cells after serial in vivo subtransplantation. Child's Nervous System, 2013, 29, 55-64.	1.1	10
54	Insulin-Like Growth Factor Binding Protein-3 Exerts Its Anti-Metastatic Effect in Aerodigestive Tract Cancers by Disrupting the Protein Stability of Vimentin. Cancers, 2021, 13, 1041.	3.7	10

#	Article	IF	CITATIONS
55	Phytosphingosine exhibits an anti-epithelial–mesenchymal transition function by the inhibition of EGFR signaling in human breast cancer cells. Oncotarget, 2017, 8, 77794-77808.	1.8	10
56	Soluble ICAMâ€1 a Pivotal Communicator between Tumors and Macrophages, Promotes Mesenchymal Shift of Glioblastoma. Advanced Science, 2022, 9, e2102768.	11.2	10
57	Loss of FBXL14 promotes mesenchymal shift and radioresistance of non-small cell lung cancer by TWIST1 stabilization. Signal Transduction and Targeted Therapy, 2021, 6, 272.	17.1	9
58	Novel miR-5088-5p promotes malignancy of breast cancer by inhibiting DBC2. Molecular Therapy - Nucleic Acids, 2021, 25, 127-142.	5.1	9
59	PKCδ activated by c-MET enhances infiltration of human glioblastoma cells through NOTCH2 signaling. Oncotarget, 2016, 7, 4890-4902.	1.8	9
60	K-RAS Acts as a Critical Regulator of CD44 to Promote the Invasiveness and Stemness of GBM in Response to Ionizing Radiation. International Journal of Molecular Sciences, 2021, 22, 10923.	4.1	9
61	Radiation treatment and cancer stem cells. Archives of Pharmacal Research, 2015, 38, 408-413.	6.3	8
62	Geranylgeranylacetone alleviates radiation-induced lung injury by inhibiting epithelial-to-mesenchymal transition signaling. Molecular Medicine Reports, 2016, 13, 4666-4670.	2.4	8
63	Deterministic Capture of Individual Circulating Tumor Cells Using a Flow-Restricted Microfluidic Trap Array. Micromachines, 2018, 9, 106.	2.9	6
64	Low dose radiation regulates BRAF-induced thyroid cellular dysfunction and transformation. Cell Communication and Signaling, 2019, 17, 12.	6.5	6
65	GPR110 promotes progression and metastasis of triple-negative breast cancer. Cell Death Discovery, 2022, 8, .	4.7	5
66	Influence of the Amount of Fresh Specimen on the Isolation of Tumor Mesenchymal Stem-Like Cells from High-Grade Glioma. Yonsei Medical Journal, 2021, 62, 936.	2.2	2
67	Reply to D'Alessandris et al.: Clear evidence of differences between tumor-resident mesenchymal stemlike cells and bone marrow-derived mesenchymal stem cells. Neuro-Oncology, 2021, 23, 1205-1206.	1.2	1
68	FBXO15 plays a critical suppressive functional role in regulation of breast cancer progression. Signal Transduction and Targeted Therapy, 2021, 6, 211.	17.1	1