Jörg Töpfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4321604/publications.pdf

Version: 2024-02-01

126907 144013 3,718 109 33 citations h-index papers

57 g-index 110 110 110 4034 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Synthesis and properties of lead-free BNT-BT-xCZ ceramics as high-temperature dielectrics. Materials Research Bulletin, 2022, 145, 111560.	5.2	15
2	Large Thermal Expansion LTCC System for Cofiring with Integrated Functional Ceramics Layers. Materials, 2022, 15, 564.	2.9	1
3	Sintering and electrical properties of Cu-substituted Zn-Co-Ni-Mn spinel ceramics for NTC thermistors thick films. Journal of the European Ceramic Society, 2022, 42, 2261-2267.	5.7	29
4	Tuning of high-temperature dielectric properties in the system (Bi0.5Na0.5)TiO3–BaTiO3–CaZrO3. Ceramics International, 2022, , .	4.8	0
5	Niâ€Cuâ€Zn ferrites with high Curie temperature for multilayer inductors with increased operating temperatures. International Journal of Applied Ceramic Technology, 2021, 18, 129-137.	2.1	5
6	Low pO2 sintering and reoxidation of lead-free KNNLT piezoceramic laminates. Journal of the European Ceramic Society, 2021, 41, 344-351.	5.7	11
7	Low-temperature sintered Ni–Zn–Co–Mn–O spinel oxide ceramics for multilayer NTC thermistors. Journal of Materials Science: Materials in Electronics, 2021, 32, 10761-10768.	2.2	5
8	Cation distribution in NiMn2O4 spinel probed by high temperature thermopower measurements. Journal of Alloys and Compounds, 2021, 865, 158909.	5 . 5	9
9	Phase Formation, Microstructure and Permeability of Fe-Deficient Ni-Cu-Zn Ferrites, (I): Effect of Sintering Temperature. Magnetochemistry, 2021, 7, 118.	2.4	1
10	Cofiring of LTCC multilayer assemblies with integrated NTC thermistor temperature sensor layers. Ceramics International, 2021, 47, 27849-27853.	4.8	8
11	A Design Approach for an Integrated Self-Biased Ka-Band Isolator. , 2021, , .		1
12	Phase stability and magnetic properties of SrFe ₁₈ O ₂₇ Wâ€type hexagonal ferrite. Journal of the American Ceramic Society, 2020, 103, 324-334.	3.8	8
13	Hexavalent (<i>Me</i> ―W/Mo)â€modified (Ba,Ca)TiO ₃ â€Bi(Mg, <i>Me</i>)O ₃ perovskites for highâ€temperature dielectrics. Journal of the American Ceramic Society, 2020, 103, 6881-6892.	3.8	4
14	Multilayer ferrite inductors for the use at high temperatures. Microelectronics International, 2020, 37, 73-78.	0.6	3
15	Ga-, Y-, and Sc-substituted M-type ferrites for self-biasing circulators in LTCC microwave modules. AIP Advances, 2020, 10, 025315.	1.3	6
16	Phase formation and saturation magnetization of La-Zn-substituted M-type strontium ferrites. Journal of Magnetism and Magnetic Materials, 2020, 508, 166887.	2.3	10
17	Integration Concept for a Self-Biased Ka-Band Circulator. , 2020, , .		0
18	Phase formation and magnetic properties of CoFe2O4/CoFe2 nanocomposites. Materials Chemistry and Physics, 2019, 227, 83-89.	4.0	15

#	Article	lF	CITATIONS
19	Sintering, microwave properties, and circulator applications of textured Sc-substituted M-type ferrite thick films. Journal of the European Ceramic Society, 2019, 39, 3077-3081.	5.7	32
20	Transverse thermoelectric multilayer generator with bismuth-substituted calcium cobaltite: Design optimization through variation of tilt angle. Journal of the European Ceramic Society, 2019, 39, 2923-2929.	5.7	3
21	Synthesis and magnetic properties of hard/soft SrAl2Fe10O19/Fe(FeCo2) nanocomposites. Journal of Magnetism and Magnetic Materials, 2019, 480, 40-46.	2.3	9
22	Phase formation, magnetic properties, and phase stability in reducing atmosphere of M-type strontium hexaferrite nanoparticles synthesized via a modified citrate process. Journal of Materials Science, 2019, 54, 1136-1146.	3.7	18
23	Oxide multilayer thermoelectric generators. International Journal of Applied Ceramic Technology, 2018, 15, 716-722.	2.1	7
24	Sintering behavior, microstructure and thermoelectric properties of calcium cobaltite thick films for transversal thermoelectric multilayer generators. Journal of the European Ceramic Society, 2018, 38, 1600-1607.	5.7	18
25	Low-temperature sintering of BaTiO3 positive temperature coefficient of resistivity (PTCR) ceramics. Journal of Materials Science: Materials in Electronics, 2018, 29, 17881-17886.	2.2	1
26	Synthesis, doping and electrical bulk response of (Bi1/2Na1/2)xBa1-xTiO3Â+ CaO –based ceramics with positive temperature coefficient of resistivity (PTCR). Journal of Alloys and Compounds, 2018, 762, 209-215.	5. 5	9
27	Effect of SiO 2 sintering additive on the positive temperature coefficient of resistivity (PTCR) behavior of (Bi $1/2$ Na $1/2$) 0.10 Ba 0.90 TiO 3 + CaO ceramics. Materials Research Bulletin, 2017, 89, 217-223.	5.2	8
28	Thermoelectric properties of Gd/W double substituted calcium manganite. Journal of Alloys and Compounds, 2017, 699, 788-795.	5 . 5	17
29	Fabrication of a transversal multilayer thermoelectric generator with substituted calcium manganite. Journal of the American Ceramic Society, 2017, 100, 5700-5708.	3.8	11
30	Evaluation of soft chemistry methods to synthesize Gd-doped CaMnO3â^Î with improved thermoelectric properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 223, 185-193.	3.5	24
31	Low-temperature sintering and magnetic properties of Sc- and In-substituted M-type hexagonal barium ferrites for microwave applications. Materials Research Bulletin, 2017, 86, 19-23.	5.2	40
32	Effect of oxygen partial pressure on co-firing behavior and magnetic properties of LTCC modules with integrated NiCuZn ferrite layers. Journal of Electroceramics, 2016, 37, 100-109.	2.0	5
33	Integration of Highâ€Frequency Mâ€Type Hexagonal Ferrite Inductors in <scp>LTCC</scp> Multilayer Modules. International Journal of Applied Ceramic Technology, 2016, 13, 540-548.	2.1	10
34	Electron spin resonance (ESR) of magnetic sublattices in Sc-substituted barium hexaferrite. AIP Advances, $2016, 6, .$	1.3	10
35	A Monolithic Oxide-Based Transversal Thermoelectric Energy Harvester. Journal of Electronic Materials, 2016, 45, 1966-1969.	2.2	13
36	Integration of additive-free Ni–Cu–Zn ferrite layers into LTCC multilayer modules. Journal of the European Ceramic Society, 2016, 36, 1931-1937.	5.7	14

#	Article	IF	Citations
37	Thermoelectric properties of Ca3Co4O9 ceramics prepared by an alternative pressure-less sintering/annealing method. Journal of Alloys and Compounds, 2016, 659, 122-126.	5.5	49
38	Effect of Carbon Nanotubes on Thermoelectric Properties in Zn0.98Al0.020. Journal of Electronic Materials, 2016, 45, 1459-1463.	2.2	14
39	Charge localization and magnetocrystalline anisotropy in La, Pr, and Nd substituted Sr hexaferrites. Physical Review B, 2015, 92, .	3.2	21
40	Transversal Oxide-Metal Thermoelectric Device for Low-Power Energy Harvesting. Energy Harvesting and Systems, 2015, 2, 25-35.	2.7	3
41	Co/Ti-substituted M-type hexagonal ferrites for high-frequency multilayer inductors. Journal of Magnetism and Magnetic Materials, 2015, 384, 1-5.	2.3	25
42	Microstructure and Electric Properties of CaCu ₃ Ti ₄ O ₁₂ Multilayer Capacitors. Journal of the American Ceramic Society, 2015, 98, 141-147.	3.8	61
43	Effect of sintering conditions on microstructure and dielectric properties of CaCu3Ti4O12 (CCTO) ceramics. Journal of Electroceramics, 2015, 34, 241-248.	2.0	44
44	A Mössbauer investigation of Sr1â^'xLaxFe12O19 (0â‰xâ‰1) M-type hexaferrites. Physica B: Condensed Matter, 2015, 470-471, 33-38.	2.7	21
45	Complex additive systems for Mn-Zn ferrites with low power loss. Journal of Applied Physics, 2015, 117,	2.5	23
46	Integration of CaCu3Ti4O12 capacitors into LTCC multilayer modules. Journal of the European Ceramic Society, 2015, 35, 3043-3049.	5.7	23
47	Hexagonal ferrites of X-, W-, and M-type in the system Sr–Fe–O: A comparative study. Journal of Solid State Chemistry, 2015, 226, 133-141.	2.9	34
48	Chemical and structural effects on the high-temperature mechanical behavior of $(1\hat{a}^*\langle i\rangle \times \langle i\rangle)(Na1/2Bi1/2)TiO3-\langle i\rangle \times \langle i\rangle BaTiO3$ ceramics. Journal of Applied Physics, 2015, 117, .	2.5	27
49	Integration of Ni-Cu-Zn and Hexagonal Ferrites into LTCC Modules: Cofiring Strategies and Magnetic Properties. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2014, 61, S214-S217.	0.2	1
50	Lowâ€Temperature Sintered <scp>NTC</scp> Thermistor Ceramics for Thickâ€Film Temperature Sensors. International Journal of Applied Ceramic Technology, 2013, 10, 428-434.	2.1	12
51	Phase Formation, Sintering Behavior, and Magnetic Properties of Lowâ€Temperature Fired Mg–Cu–Zn Ferrites. Journal of the American Ceramic Society, 2012, 95, 3883-3888.	3.8	7
52	Integration of Niâ€Cuâ€Zn Ferrite in Low Temperature Coâ€fired Ceramics (<scp>LTCC</scp>) Modules. International Journal of Applied Ceramic Technology, 2012, 9, 18-28.	2.1	32
53	Nonstoichiometry, point defects and magnetic properties in Sr2FeMoO6â^Î double perovskites. Journal of Solid State Chemistry, 2012, 185, 76-81.	2.9	44
54	High permeability Ni–Cu–Zn ferrites through additive-free low-temperature sintering of nanocrystalline powders. Journal of the European Ceramic Society, 2012, 32, 1091-1098.	5.7	47

#	Article	IF	CITATIONS
55	Low temperature sintering of sub-stoichiometric Ni–Cu–Zn ferrites: Shrinkage, microstructure and permeability. Journal of Magnetism and Magnetic Materials, 2012, 324, 578-583.	2.3	36
56	Zn- and Cu-substituted Co2Y hexagonal ferrites: Sintering behavior and permeability. Journal of Magnetism and Magnetic Materials, 2012, 324, 1804-1808.	2.3	29
57	Low-Temperature Firing of Substituted M-Type Hexagonal Ferrites for Multilayer Inductors. IEEE Transactions on Magnetics, 2012, 48, 1556-1559.	2.1	17
58	Evolution of an Oxygen Near-Edge X-ray Absorption Fine Structure Transition in the Upper Hubbard Band in α-Fe ₂ O ₃ upon Electrochemical Oxidation. Journal of Physical Chemistry C, 2011, 115, 5619-5625.	3.1	62
59	Preparation, thermal stability and permeability behaviour of Z-type hexagonal ferrites for multilayer inductors. International Journal of Materials and Product Technology, 2011, 40, 15.	0.2	0
60	Rareâ€Earthâ€Substituted Sr _{1â^'<i>x</i>} Ln _{<i>x</i>} Fe ₁₂ O ₁₉ Hexagonal Ferrites. Journal of the American Ceramic Society, 2011, 94, 2109-2118.	3.8	42
61	Nanocrystalline magnetite and Mn–Zn ferrite particles via the polyol process: Synthesis and magnetic properties. Materials Chemistry and Physics, 2011, 129, 337-342.	4.0	56
62	Synthesis, sintering behavior and magnetic properties of Cu-substituted Co2Z hexagonal ferrites. Journal of Materials Science: Materials in Electronics, 2011, 22, 467-473.	2.2	21
63	Synthesis of nanocrystalline Mn–Zn ferrite powders through thermolysis of mixed oxalates. Ceramics International, 2011, 37, 995-1002.	4.8	46
64	Structural properties of (Bi0.5Na0.5)1â^xBaxTiO3 lead-free piezoelectric ceramics. Journal of the European Ceramic Society, 2010, 30, 3445-3453.	5.7	90
65	Mixed-metal carbonates as precursors for the synthesis of nanocrystalline Mn–Zn ferrites. Journal of Magnetism and Magnetic Materials, 2010, 322, 3455-3459.	2.3	10
66	Oxygen stoichiometry and expansion behavior of Ba0.5Sr0.5Co0.8Fe0.2O3â^Î. Solid State Ionics, 2010, 181, 64-70.	2.7	85
67	Variation of the oxygen content and point defects in tephroite, Mn2SiO4+δ. Solid State Ionics, 2010, 181, 479-488.	2.7	6
68	Nanocrystalline Mn–Zn ferrites from mixed oxalates: Synthesis, stability and magnetic properties. Journal of Alloys and Compounds, 2010, 508, 433-439.	5.5	34
69	Reinvestigation of the Fe-rich part of the pseudo-binary system SrO–Fe2O3. Journal of Solid State Chemistry, 2009, 182, 2409-2416.	2.9	50
70	Preparation, thermal stability and permeability behavior of substituted Z-type hexagonal ferrites for multilayer inductors. Journal of Electroceramics, 2009, 22, 227-232.	2.0	13
71	Synthesis and magnetic properties of La-substituted M-type Sr hexaferrites. Journal of Magnetism and Magnetic Materials, 2009, 321, 4045-4051.	2.3	98
72	LTCC-Modules with Integrated Ferrite Layersâ€"Strategies for Material Development and Co-Sintering. Journal of Microelectronics and Electronic Packaging, 2009, 6, 49-53.	0.7	13

#	Article	IF	Citations
73	Synthesis of magnetite nanoparticles by thermal decomposition of ferrous oxalate dihydrate. Journal of Materials Science, 2008, 43, 5123-5130.	3.7	102
74	On the thermal stability of Co2Z hexagonal ferrites for low-temperature ceramic cofiring technologies. Journal of Magnetism and Magnetic Materials, 2008, 320, 1370-1376.	2.3	36
75	Synthesis and physical characterization of magnetite nanoparticles for biomedical applications. Materials Chemistry and Physics, 2008, 110, 426-433.	4.0	198
76	Highly sinter-active (Mg–Cu)–Zn ferrite nanoparticles prepared by flame spray synthesis. Acta Materialia, 2007, 55, 1955-1964.	7.9	34
77	Hysteresis losses of magnetic nanoparticle powders in the single domain size range. Journal of Magnetism and Magnetic Materials, 2007, 308, 305-312.	2.3	120
78	Influence of dextran coating on the magnetic behaviour of iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 2007, 311, 51-54.	2.3	67
79	Mg?Cu?Zn Ferrites for Multilayer Inductors. International Journal of Applied Ceramic Technology, 2007, 4, 415-422.	2.1	18
80	Preparation and physical properties of CuAl1â^'xMnxO2 (0â‰xâ‰0.2) delafossites. Solid State Sciences, 2007, 9, 236-239.	3.2	11
81	Magnetic Nanoparticles for Biomedical Heating Applications. Zeitschrift Fur Physikalische Chemie, 2006, 220, 145-151.	2.8	29
82	Soft Ferrite Materials for Multilayer Inductors. International Journal of Applied Ceramic Technology, 2006, 3, 455-462.	2.1	34
83	Ni-Cu-Zn Ferrites for low temperature firing: II. Effects of powder morphology and Bi2O3 addition on microstructure and permeability. Journal of Electroceramics, 2006, 16, 199-205.	2.0	81
84	Influence of SiO2 and CaO additions on the microstructure and magnetic properties of sintered Sr-hexaferrite. Journal of the European Ceramic Society, 2005, 25, 1681-1688.	5.7	60
85	Microstructural effects in low loss power ferrites. Journal of the European Ceramic Society, 2005, 25, 3045-3049.	5.7	24
86	Preparation and physical properties of the solid solutions Cu1+xMn1â^'xO2 (). Journal of Solid State Chemistry, 2005, 178, 2751-2758.	2.9	46
87	Ni-Cu-Zn Ferrites for Low Temperature Firing: I. Ferrite Composition and its Effect on Sintering Behavior and Permeability. Journal of Electroceramics, 2005, 15, 215-221.	2.0	63
88	Structure, nonstoichiometry and magnetic properties of the perovskites Sr1â^'xCaxMnO3â^'δ. Solid State Sciences, 2004, 6, 647-654.	3.2	26
89	Permanent magnetic thick films from remanence optimized NdFeB-inks. Journal of Materials Science: Materials in Electronics, 2004, 15, 165-168.	2.2	10
90	Multi-pole magnetization of NdFeB magnets for magnetic micro-actuators and its characterization with a magnetic field mapping device. Journal of Magnetism and Magnetic Materials, 2004, 270, 124-129.	2.3	10

#	Article	IF	CITATIONS
91	Point defects and deviation from stoichiometry in (Znxâ^'y/4Mn1â^'xâ^'3y/4Fe2+y)1â^'Î'/3O4. Journal of the European Ceramic Society, 2004, 24, 603-612.	5.7	10
92	Multi-pole magnetization of NdFeB sintered magnets and thick films for magnetic micro-actuators. Sensors and Actuators A: Physical, 2004, 113, 257-263.	4.1	19
93	NdFeB thick films prepared by tape casting. Journal of Magnetism and Magnetic Materials, 2003, 265, 337-344.	2.3	39
94	Deviation from stoichiometry and point defects in (ZnxMn1\$minus;xFe2)1\$minus;\$delta;/3O4. Solid State lonics, 2003, 159, 397-404.	2.7	7
95	Transport and Magnetic Properties of the Perovskites La1-yMnO3and LaMn1-zO3. Chemistry of Materials, 1997, 9, 1467-1474.	6.7	146
96	LaMnO3+Î'Revisited. Journal of Solid State Chemistry, 1997, 130, 117-128.	2.9	418
97	Investigations on the charge transport in LaMnO3 + \hat{l} at low temperatures. Journal of Materials Chemistry, 1996, 6, 1511-1516.	6.7	20
98	Point defects and cation tracer diffusion in (CrxFe1 â^2 x)3 â^2 ÎO4 spinels. Solid State Ionics, 1995, 81, 251-266.	2.7	135
99	Flame pyrolysis: A preparation route for ultrafine powders of metastable?-SrMnO3 and NiMn2O4. Journal of Materials Science Letters, 1994, 13, 1111-1113.	0.5	22
100	Room Temperature Chemical Oxidation of Delafossite-Type Oxides. Journal of Solid State Chemistry, 1994, 111, 104-110.	2.9	30
101	Thermopower analysis of substituted nickel manganite spinels. Materials Research Bulletin, 1994, 29, 225-232.	5.2	23
102	Structure, properties and cation distribution of spinels of the series FezNi1â^2zMn2O4 (0â $^{1}/2z$ â $^{1}/2$ 2/3). Journa of Alloys and Compounds, 1994, 215, 97-103.	al 5.5	2
103	Investigations on electronically conducting oxide systems XXIV[1]: Preparation and electrical properties of the spinel series CuzNiMn2â° zO4. Solid State Ionics, 1993, 59, 249-256.	2.7	34
104	Investigations on electronically conducting oxide systems XXVI. Preparation and properties of Ni6MnO8 and NiMnO3 - \hat{l} (\hat{l} \hat{a} % 0.02). Journal of Alloys and Compounds, 1993, 196, 75-79.	5.5	24
105	Investigations on electronically conducting oxide systems XXV. Electrical and crystallographic studies of the system LizCu1â°'zMn2O4. Journal of Alloys and Compounds, 1993, 202, 231-235.	5. 5	9
106	Cation Valencies and Distribution in the Spinels NiMn2O4 and MzNiMn2â^'zO4 (M = Li, Cu) Studied by XPS. Physica Status Solidi A, 1992, 134, 405-415.	1.7	116
107	Thermal decomposition of mixed crystals NixMn3â^'x(C2O4)3· 6H2O. Thermochimica Acta, 1992, 202, 281-289.	2.7	18
108	Conductivity data and preparation routes for NiMn2O4 thermistor ceramics. Journal of the European Ceramic Society, 1992, 9, 187-191.	5.7	57

JöRG TöPFER

#	Article	IF	CITATIONS
109	Microstructure and phase development in NiMn2O4 spinel ceramics during isothermal sintering. Journal of the European Ceramic Society, 1990, 6, 351-359.	5.7	44