
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4321541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anti-mycobacterial natural products and mechanisms of action. Natural Product Reports, 2022, 39, 77-89.	10.3	13
2	Efficient discovery of potential inhibitors for SARS-CoV-2 3C-like protease from herbal extracts using a native MS-based affinity-selection method. Journal of Pharmaceutical and Biomedical Analysis, 2022, 209, 114538.	2.8	18
3	Binding Studies of the Prodrug HAO472 to SARS-Cov-2 Nsp9 and Variants. ACS Omega, 2022, 7, 7327-7332.	3.5	10
4	Identifying New Ligands for JNK3 by Fluorescence Thermal Shift Assays and Native Mass Spectrometry. ACS Omega, 2022, 7, 13925-13931.	3.5	6
5	Collision-Induced Affinity Selection Mass Spectrometry for Identification of Ligands. ACS Bio & Med Chem Au, 2022, 2, 450-455.	3.7	7
6	Development of a target identification approach using native mass spectrometry. Scientific Reports, 2021, 11, 2387.	3.3	15
7	Antimicrobial Benzyltetrahydroisoquinoline-Derived Alkaloids from the Leaves of <i>Doryphora aromatica</i> . Journal of Natural Products, 2021, 84, 676-682.	3.0	10
8	Parkinson's disease: Alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biology, 2021, 41, 101896.	9.0	75
9	Native Mass Spectrometry for the Study of PROTAC GNEâ€987â€Containing Ternary Complexes. ChemMedChem, 2021, 16, 2206-2210.	3.2	23
10	Peculiarities of meroterpenoids and their bioproduction. Applied Microbiology and Biotechnology, 2021, 105, 3987-4003.	3.6	10
11	Genome-guided investigation of anti-inflammatory sesterterpenoids with 5-15 trans-fused ring system from phytopathogenic fungi. Applied Microbiology and Biotechnology, 2021, 105, 5407-5417.	3.6	6
12	Antiplasmodial activity of the natural product compounds alstonine and himbeline. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 16, 17-22.	3.4	11
13	Calcium channels and iron metabolism: A redox catastrophe in Parkinson's disease and an innovative path to novel therapies?. Redox Biology, 2021, 47, 102136.	9.0	4
14	Styracifoline from the Vietnamese Plant <i>Desmodium styracifolium</i> : A Potential Inhibitor of Diabetes-Related and Thrombosis-Based Proteins. ACS Omega, 2021, 6, 23211-23221.	3.5	5
15	A natural product compound inhibits coronaviral replication inÂvitro by binding to the conserved Nsp9 SARS-CoV-2 protein. Journal of Biological Chemistry, 2021, 297, 101362.	3.4	35
16	Advances in the development of imaging probes and aggregation inhibitors for alpha-synuclein. Acta Pharmacologica Sinica, 2020, 41, 483-498.	6.1	30
17	Lessons from Exploring Chemical Space and Chemical Diversity of Propolis Components. International Journal of Molecular Sciences, 2020, 21, 4988.	4.1	31
18	Analysis of Approaches to Anti-tuberculosis Compounds. ACS Omega, 2020, 5, 28529-28540.	3.5	12

#	Article	IF	CITATIONS
19	Marine natural products from sponges (Porifera) of the order Dictyoceratida (2013 to 2019); a promising source for drug discovery. RSC Advances, 2020, 10, 34959-34976.	3.6	24
20	A Grand Challenge. 3. Unbiased Phenotypic Function of Metabolites from Australia Plants Gloriosa superba and Alangium villosum against Parkinson's Disease. Journal of Natural Products, 2020, 83, 1440-1452.	3.0	5
21	<p>Hepatitis C Virus NS3 Protease and Helicase Inhibitors from Red Sea Sponge (Amphimedon) Species in Green Synthesized Silver Nanoparticles Assisted by in Silico Modeling and Metabolic Profiling</p> . International Journal of Nanomedicine, 2020, Volume 15, 3377-3389.	6.7	30
22	Discovery of a Natural Product That Binds to the Mycobacterium tuberculosis Protein Rv1466 Using Native Mass Spectrometry. Molecules, 2020, 25, 2384.	3.8	18
23	A Phenotarget Approach for Identifying an Alkaloid Interacting with the Tuberculosis Protein Rv1466. Marine Drugs, 2020, 18, 149.	4.6	11
24	Genome-based mining of new antimicrobial meroterpenoids from the phytopathogenic fungus Bipolaris sorokiniana strain 11134. Applied Microbiology and Biotechnology, 2020, 104, 3835-3846.	3.6	18
25	Genome-Inspired Chemical Exploration of Marine Fungus Aspergillus fumigatus MF071. Marine Drugs, 2020, 18, 352.	4.6	22
26	Testicular Caspase-3 and \hat{l}^2 -Catenin Regulators Predicted via Comparative Metabolomics and Docking Studies. Metabolites, 2020, 10, 31.	2.9	14
27	The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Natural Product Reports, 2019, 36, 35-107.	10.3	92
28	Fragment-based screening with natural products for novel anti-parasitic disease drug discovery. Expert Opinion on Drug Discovery, 2019, 14, 1283-1295.	5.0	19
29	Traditional Chinese medicine extraction method by ethanol delivers drug-like molecules. Chinese Journal of Natural Medicines, 2019, 17, 713-720.	1.3	9
30	Comprehensive TCM molecular networking based on MS/MS in silico spectra with integration of virtual screening and affinity MS screening for discovering functional ligands from natural herbs. Analytical and Bioanalytical Chemistry, 2019, 411, 5785-5797.	3.7	26
31	ls it time for artificial intelligence to predict the function of natural products based on 2D-structure. MedChemComm, 2019, 10, 1667-1677.	3.4	9
32	Identification of a New α-Synuclein Aggregation Inhibitor via Mass Spectrometry Based Screening. ACS Chemical Neuroscience, 2019, 10, 2683-2691.	3.5	24
33	Genome- and MS-based mining of antibacterial chlorinated chromones and xanthones from the phytopathogenic fungus Bipolaris sorokiniana strain 11134. Applied Microbiology and Biotechnology, 2019, 103, 5167-5181.	3.6	18
34	Potential of marine natural products against drug-resistant bacterial infections. Lancet Infectious Diseases, The, 2019, 19, e237-e245.	9.1	67
35	Development of an HPLC-based guanosine monophosphate kinase assay and application to Plasmodium vivax guanylate kinase. Analytical Biochemistry, 2019, 575, 63-69.	2.4	2
36	Fragment-Based Screening of a Natural Product Library against 62 Potential Malaria Drug Targets Employing Native Mass Spectrometry. ACS Infectious Diseases, 2018, 4, 431-444.	3.8	50

#	Article	IF	CITATIONS
37	Identification of natural products as novel ligands for the human 5-HT2C receptor. Biophysics Reports, 2018, 4, 50-61.	0.8	23
38	Harnessing the Properties of Natural Products. Annual Review of Pharmacology and Toxicology, 2018, 58, 451-470.	9.4	64
39	Structural Searching of Biosynthetic Enzymes to Predict Protein Targets of Natural Products. Planta Medica, 2018, 84, 304-310.	1.3	6
40	5,6,7,3′,4′,5′-Hexamethoxyflavone from the Australian plant Eremophila debilis (Myoporaceae). Fìtoterapìâ, 2018, 126, 90-92.	2.2	3
41	Design and Synthesis of Natural Product Inspired Libraries Based on the Three-Dimensional (3D) Cedrane Scaffold: Toward the Exploration of 3D Biological Space. Journal of Medicinal Chemistry, 2018, 61, 6609-6628.	6.4	20
42	Advantages of Molecular Weight Identification during Native MS Screening. Planta Medica, 2018, 84, 1201-1212.	1.3	2
43	Actinomycete Metabolome Induction/Suppression with <i>N</i> -Acetylglucosamine. Journal of Natural Products, 2017, 80, 828-836.	3.0	32
44	Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. Lancet Infectious Diseases, The, 2017, 17, e30-e41.	9.1	113
45	Ligand identification of the adenosine A _{2A} receptor in self-assembled nanodiscs by affinity mass spectrometry. Analytical Methods, 2017, 9, 5851-5858.	2.7	7
46	A systems approach using OSMAC, Log P and NMR fingerprinting: An approach to novelty. Synthetic and Systems Biotechnology, 2017, 2, 276-286.	3.7	25
47	Achyrodimer F, a tyrosyl-DNA phosphodiesterase I inhibitor from an Australian fungus of the family Cortinariaceae. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4007-4010.	2.2	18
48	Evaluation of fermentation conditions triggering increased antibacterial activity from a near-shore marine intertidal environment-associated Streptomyces species. Synthetic and Systems Biotechnology, 2017, 2, 28-38.	3.7	18
49	Dereplication of cytotoxic compounds from different parts of <i>Sophora pachycarpa</i> using an integrated method of HPLC, LC-MS and ¹ H-NMR techniques. Natural Product Research, 2017, 31, 1270-1276.	1.8	13
50	Merosesquiterpene Congeners from the Australian Sponge Hyrtios digitatus as Potential Drug Leads for Atherosclerosis Disease. Marine Drugs, 2017, 15, 6.	4.6	14
51	Turning Metabolomics into Drug Discovery. Journal of the Brazilian Chemical Society, 2016, , .	0.6	3
52	Native Mass Spectrometry in Fragment-Based Drug Discovery. Molecules, 2016, 21, 984.	3.8	54
53	Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathogens, 2016, 12, e1005763.	4.7	244
54	Linckosides enhance proliferation and induce morphological changes in human olfactory ensheathing cells. Molecular and Cellular Neurosciences, 2016, 75, 1-13.	2.2	6

#	Article	IF	CITATIONS
55	Optimization of Electrospray Ionization by Statistical Design of Experiments and Response Surface Methodology: Protein–Ligand Equilibrium Dissociation Constant Determinations. Journal of the American Society for Mass Spectrometry, 2016, 27, 1520-1530.	2.8	20
56	Fungal biotransformation of tanshinone results in [4+2] cycloaddition with sorbicillinol: evidence for enzyme catalysis and increased antibacterial activity. Applied Microbiology and Biotechnology, 2016, 100, 8349-8357.	3.6	16
57	Lignans from the Australian Endemic Plant <i>Austrobaileya scandens</i> . Journal of Natural Products, 2016, 79, 1514-1523.	3.0	17
58	Lipoxygenase inhibitors from the latex of Calotropis Procera. Archives of Pharmacal Research, 2016, , 1.	6.3	10
59	Discovery of tanshinone derivatives with anti-MRSA activity via targeted bio-transformation. Synthetic and Systems Biotechnology, 2016, 1, 187-194.	3.7	8
60	Comparing atom-based with residue-based descriptors in predicting binding site similarity: do backbone atoms matter?. Future Medicinal Chemistry, 2016, 8, 1871-1885.	2.3	3
61	A model to predict anti-tuberculosis activity: value proposition for marine microorganisms. Journal of Antibiotics, 2016, 69, 594-599.	2.0	9
62	Cytotoxic ethnic Yao medicine Baizuan, leaves of Schisandra viridis A. C. Smith. Journal of Ethnopharmacology, 2016, 194, 146-152.	4.1	14
63	A Grand Challenge. 2. Phenotypic Profiling of a Natural Product Library on Parkinson's Patient-Derived Cells. Journal of Natural Products, 2016, 79, 1982-1989.	3.0	11
64	Synthesis of two chiral octahydroindole scaffolds for drug discovery. Tetrahedron, 2016, 72, 1225-1228.	1.9	2
65	Bioaffinity Mass Spectrometry Screening. Journal of Biomolecular Screening, 2016, 21, 194-200.	2.6	17
66	A Grand Challenge: Unbiased Phenotypic Function of Metabolites from <i>Jaspis splendens</i> against Parkinson's Disease. Journal of Natural Products, 2016, 79, 353-361.	3.0	19
67	Unique Polybrominated Hydrocarbons from the Australian Endemic Red Alga <i>Ptilonia australasica</i> . Journal of Natural Products, 2016, 79, 570-577.	3.0	7
68	Stimulating the proliferation, migration and lamellipodia of Schwann cells using low-dose curcumin. Neuroscience, 2016, 324, 140-150.	2.3	27
69	Antibacterial and antifungal screening of natural products sourced from Australian fungi and characterisation of pestalactams D–F. Phytochemistry, 2016, 124, 79-85.	2.9	21
70	TCM, brain function and drug space. Natural Product Reports, 2016, 33, 6-25.	10.3	43
71	Dereplication of antioxidant compounds in Bene (Pistacia atlantica subsp. mutica) hull using a multiplex approach of HPLC–DAD, LC–MS and 1 H NMR techniques. Journal of Pharmaceutical and Biomedical Analysis, 2016, 117, 352-362.	2.8	11
72	The Small Molecule <i>R</i> -(-)-β- <i>O</i> -Methylsynephrine Binds to Nucleoporin 153 kDa and Inhibits Angiogenesis. International Journal of Biological Sciences, 2015, 11, 1088-1099.	6.4	14

#	Article	IF	CITATIONS
73	Isolation and Total Synthesis of Stolonines A–C, Unique Taurine Amides from the Australian Marine Tunicate Cnemidocarpa stolonifera. Marine Drugs, 2015, 13, 4556-4575.	4.6	25
74	Capturing Nature's Diversity. PLoS ONE, 2015, 10, e0120942.	2.5	35
75	LAT Transport Inhibitors from <i>Pittosporum venulosum</i> Identified by NMR Fingerprint Analysis. Journal of Natural Products, 2015, 78, 1215-1220.	3.0	13
76	NMR fingerprints, an integrated approach to uncover the unique components of the drug-like natural product metabolome of termite gut-associated Streptomyces species. RSC Advances, 2015, 5, 104524-104534.	3.6	11
77	Experimental Strategies for Functional Annotation and Metabolism Discovery: Targeted Screening of Solute Binding Proteins and Unbiased Panning of Metabolomes. Biochemistry, 2015, 54, 909-931.	2.5	95
78	The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery, 2015, 14, 111-129.	46.4	1,891
79	Marine Actinomycetes in Biodiscovery. , 2015, , 663-676.		1
80	Dragmacidol A and dragmacidolide A from the Australian marine sponge Dragmacidon australe. Tetrahedron, 2015, 71, 6204-6209.	1.9	9
81	Tyrosyl-DNA Phosphodiesterase I Inhibitors from the Australian Plant <i>Macropteranthes leichhardtii</i> . Journal of Natural Products, 2015, 78, 1756-1760.	3.0	17
82	Elicitation of secondary metabolism in actinomycetes. Biotechnology Advances, 2015, 33, 798-811.	11.7	199
83	Similarity between Flavonoid Biosynthetic Enzymes and Flavonoid Protein Targets Captured by Three-Dimensional Computing Approach. Planta Medica, 2015, 81, 467-473.	1.3	9
84	In silico Driven Pharmacognosy: Forth, Back and Reverse. Planta Medica, 2015, 81, 427-428.	1.3	1
85	Cytotoxic cardenolides from the latex of Calotropis procera. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4615-4620.	2.2	36
86	Kororamide B, a brominated alkaloid from the bryozoan Amathia tortuosa and its effects on Parkinson's disease cells. Tetrahedron, 2015, 71, 7879-7884.	1.9	13
87	Total Synthesis of Clavatadine A. Journal of Natural Products, 2015, 78, 120-124.	3.0	15
88	Synthesis and antimalarial evaluation of amide and urea derivatives based on the thiaplakortone A natural product scaffold. Organic and Biomolecular Chemistry, 2015, 13, 1558-1570.	2.8	25
89	Bioaffinity Mass Spectrometry Screening using Droplet-Based Microfluidics. Micro and Nanosystems, 2015, 7, 74-79.	0.6	4
90	Chemoinformatic Analysis as a Tool for Prioritization of Trypanocidal Marine Derived Lead Compounds. Marine Drugs, 2014, 12, 1169-1184.	4.6	9

#	Article	IF	CITATIONS
91	Dereplication Strategies for Targeted Isolation of New Antitrypanosomal Actinosporins A and B from a Marine Sponge Associated-Actinokineospora sp. EG49. Marine Drugs, 2014, 12, 1220-1244.	4.6	136
92	Chemical Constituents of Kino Extract from Corymbia torelliana. Molecules, 2014, 19, 17862-17871.	3.8	17
93	Low-Dose Curcumin Stimulates Proliferation, Migration and Phagocytic Activity of Olfactory Ensheathing Cells. PLoS ONE, 2014, 9, e111787.	2.5	56
94	Adlumiceine methyl ester, a new alkaloid from <i>Fumaria vaillantii</i> . Journal of Asian Natural Products Research, 2014, 16, 1148-1152.	1.4	4
95	Frontispiece: NMR Fingerprints of the Drug-like Natural-Product Space Identify Iotrochotazineâ€A: A Chemical Probe to Study Parkinson's Disease. Angewandte Chemie - International Edition, 2014, 53, n/a-n/a.	13.8	0
96	N1,N1-Dimethyl-N3-(3-(trifluoromethyl)phenethyl)propane-1,3-diamine, a new lead for the treatment of human African trypanosomiasis. European Journal of Medicinal Chemistry, 2014, 74, 541-551.	5.5	5
97	Euodenine A: A Small-Molecule Agonist of Human TLR4. Journal of Medicinal Chemistry, 2014, 57, 1252-1275.	6.4	47
98	Natural products as lead structures: chemical transformations to create lead-like libraries. Drug Discovery Today, 2014, 19, 215-221.	6.4	85
99	Endophytic Streptomyces sp. Y3111 from traditional Chinese medicine produced antitubercular pluramycins. Applied Microbiology and Biotechnology, 2014, 98, 1077-1085.	3.6	30
100	Anti-staphylococcal activity of C-methyl flavanones from propolis of Australian stingless bees (Tetragonula carbonaria) and fruit resins of Corymbia torelliana (Myrtaceae). FĬtoterapìâ, 2014, 95, 247-257.	2.2	76
101	Cardenolide Glycosides from Elaeodendron australe var. integrifolium. Phytochemistry, 2014, 98, 160-163.	2.9	4
102	Solving the Supply of Resveratrol Tetramers from Papua New Guinean Rainforest <i>Anisoptera</i> Species That Inhibit Bacterial Type III Secretion Systems. Journal of Natural Products, 2014, 77, 2633-2640.	3.0	16
103	Biologically active isoquinoline alkaloids with drug-like properties from the genus Corydalis. RSC Advances, 2014, 4, 15900.	3.6	104
104	Eco-Taxonomic Insights into Actinomycete Symbionts of Termites for Discovery of Novel Bioactive Compounds. Advances in Biochemical Engineering/Biotechnology, 2014, 147, 111-135.	1.1	16
105	Total Synthesis of Thiaplakortone A: Derivatives as Metabolically Stable Leads for the Treatment of Malaria. ACS Medicinal Chemistry Letters, 2014, 5, 178-182.	2.8	26
106	Monoterpene Glycoside ESK246 from <i>Pittosporum</i> Targets LAT3 Amino Acid Transport and Prostate Cancer Cell Growth. ACS Chemical Biology, 2014, 9, 1369-1376.	3.4	35
107	Naturally occurring scaffolds for compound library design: convenient access to bis-aryl 1-azaadamantanes carrying a vicinal amino alcohol motif. Tetrahedron Letters, 2014, 55, 5390-5393.	1.4	5
108	Predicting natural product value, an exploration of anti-TB drug space. Natural Product Reports, 2014, 31, 990-998.	10.3	44

#	Article	IF	CITATIONS
109	Structure Determination of Pentacyclic Pyridoacridine Alkaloids from the Australian Marine Organisms <i>Ancorina geodides</i> and <i>Cnemidocarpa stolonifera</i> . European Journal of Organic Chemistry, 2014, 2014, 4805-4816.	2.4	20
110	Two new antioxidant actinosporin analogues from the calcium alginate beads culture of sponge-associated Actinokineospora sp. strain EG49. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5089-5092.	2.2	37
111	Aplysinellamides A–C, Bromotyrosine-Derived Metabolites from an Australian <i>Aplysinella</i> sp. Marine Sponge. Journal of Natural Products, 2014, 77, 1210-1214.	3.0	19
112	NMR Fingerprints of the Drugâ€like Naturalâ€Product Space Identify lotrochotazineâ€A: A Chemical Probe to Study Parkinson's Disease. Angewandte Chemie - International Edition, 2014, 53, 6070-6074.	13.8	56
113	ApoE secretion modulating bromotyrosine derivative from the Australian marine sponge Callyspongia sp Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3537-3540.	2.2	14
114	Production of Induced Secondary Metabolites by a Co-Culture of Sponge-Associated Actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163. Marine Drugs, 2014, 12, 3046-3059.	4.6	112
115	Potent Cytotoxic Peptides from the Australian Marine Sponge Pipestela candelabra. Marine Drugs, 2014, 12, 3399-3415.	4.6	19
116	Frontispiz: NMR Fingerprints of the Drug-like Natural-Product Space Identify Iotrochotazineâ€A: A Chemical Probe to Study Parkinson's Disease. Angewandte Chemie, 2014, 126, n/a-n/a.	2.0	0
117	The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget, 2014, 5, 9362-9381.	1.8	111
118	Nature Bank and the Queensland Compound Library: Unique International Resources at the Eskitis Institute for Drug Discovery. Combinatorial Chemistry and High Throughput Screening, 2014, 17, 201-209.	1.1	14
119	ent-Labdane Diterpenes from the Stems ofMallotus japonicus. Journal of Natural Products, 2013, 76, 1580-1585.	3.0	13
120	Trikentramides A–D, Indole Alkaloids from the Australian Sponge <i>Trikentrion flabelliforme</i> . Journal of Natural Products, 2013, 76, 2100-2105.	3.0	29
121	Thiaplakortones A–D: Antimalarial Thiazine Alkaloids from the Australian Marine Sponge Plakortis lita. Journal of Organic Chemistry, 2013, 78, 9608-9613.	3.2	75
122	Chemical investigation of an antimalarial Chinese medicinal herb Picrorhiza scrophulariiflora. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5915-5918.	2.2	17
123	Bromotyrosine Alkaloids from the Australian Marine Sponge <i>Pseudoceratina verrucosa</i> . Journal of Natural Products, 2013, 76, 516-523.	3.0	34
124	Dictamins A–C, three unprecedented apotirucallane-type trinortriterpenoids from Dictamnus dasycarpus. Tetrahedron Letters, 2013, 54, 4150-4153.	1.4	7
125	Scaffold Flatness: Reversing the Trend. Springer Science Reviews, 2013, 1, 141-151.	1.3	34
126	<i>Plasmodium</i> Gametocyte Inhibition Identified from a Natural-Product-Based Fragment Library. ACS Chemical Biology, 2013, 8, 2654-2659.	3.4	39

8

#	Article	IF	CITATIONS
127	Front‣oading Naturalâ€Productâ€Screening Libraries for log <i>P:</i> Background, Development, and Implementation. Chemistry and Biodiversity, 2013, 10, 524-537.	2.1	22
128	The Resveratrol Tetramer (-)-Hopeaphenol Inhibits Type III Secretion in the Gram-Negative Pathogens Yersinia pseudotuberculosis and Pseudomonas aeruginosa. PLoS ONE, 2013, 8, e81969.	2.5	69
129	Basics and Principles for Building Natural Product–based Libraries for HTS. , 2012, , 87-98.		4
130	Aging Biology and Novel Targets for Drug Discovery. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67A, 168-174.	3.6	48
131	Cytotoxic Evaluation of Alkaloids and Isoflavonoids from the Australian Tree <i>Erythrina vespertilio</i> . Planta Medica, 2012, 78, 730-736.	1.3	19
132	Synthesis of melicodenines C, D and E. Tetrahedron Letters, 2012, 53, 7101-7103.	1.4	14
133	Cytotoxic Cyclic Depsipeptides from the Australian Marine Sponge <i>Neamphius huxleyi</i> . Journal of Natural Products, 2012, 75, 2200-2208.	3.0	30
134	Design and synthesis of screening libraries based on the muurolane natural product scaffold. Organic and Biomolecular Chemistry, 2012, 10, 4015.	2.8	34
135	Structural Insights into the Molecular Basis of the Ligand Promiscuity. Journal of Chemical Information and Modeling, 2012, 52, 2410-2421.	5.4	63
136	Ianthelliformisamines A–C, Antibacterial Bromotyrosine-Derived Metabolites from the Marine Sponge <i>Suberea ianthelliformis</i> . Journal of Natural Products, 2012, 75, 1001-1005.	3.0	44
137	lotrochamides A and B, antitrypanosomal compounds from the Australian marine sponge lotrochota sp Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4873-4876.	2.2	24
138	Unequivocal ¹³ C NMR assignment of cyclohexadienyl rings in bromotyrosineâ€derived metabolites from marine sponges. Magnetic Resonance in Chemistry, 2012, 50, 749-754.	1.9	6
139	Guiding principles for natural product drug discovery. Future Medicinal Chemistry, 2012, 4, 1067-1084.	2.3	37
140	Thrombin Inhibitors from the Freshwater Cyanobacterium <i>Anabaena compacta</i> . Journal of Natural Products, 2012, 75, 1546-1552.	3.0	34
141	The Relationship between Fenestrations, Sieve Plates and Rafts in Liver Sinusoidal Endothelial Cells. PLoS ONE, 2012, 7, e46134.	2.5	68
142	Drug-like Properties: Guiding Principles for the Design of Natural Product Libraries. Journal of Natural Products, 2012, 75, 72-81.	3.0	151
143	Antimalarial Activity of Pyrroloiminoquinones from the Australian Marine Sponge <i>Zyzzya</i> sp Journal of Medicinal Chemistry, 2012, 55, 5851-5858.	6.4	73
144	Synthesis of novel molecular probes inspired by harringtonolide. Organic and Biomolecular Chemistry, 2011, 9, 4570.	2.8	18

#	Article	IF	CITATIONS
145	Similar interactions of natural products with biosynthetic enzymes and therapeutic targets could explain why nature produces such a large proportion of existing drugs. Natural Product Reports, 2011, 28, 1483.	10.3	69
146	A New Quinoline Epoxide from the Australian Plant <i>Drummondita calida</i> . Planta Medica, 2011, 77, 1644-1647.	1.3	20
147	Alkaloids from the Chinese VineGnetum montanum. Journal of Natural Products, 2011, 74, 2425-2430.	3.0	33
148	Natural products and the search for novel vaccine adjuvants. Vaccine, 2011, 29, 6464-6471.	3.8	48
149	Pseudoceramines A–D, new antibacterial bromotyrosine alkaloids from the marine sponge Pseudoceratina sp Organic and Biomolecular Chemistry, 2011, 9, 6755.	2.8	49
150	Convolutamines I and J, antitrypanosomal alkaloids from the bryozoan Amathia tortusa. Bioorganic and Medicinal Chemistry, 2011, 19, 6615-6619.	3.0	28
151	Synthesis of antitrypanosomal 1,2-dioxane derivatives based on a natural product scaffold. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4793-4797.	2.2	12
152	Psammaplysin H, a new antimalarial bromotyrosine alkaloid from a marine sponge of the genus Pseudoceratina. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 846-848.	2.2	57
153	Carbene induced rearrangement products from two furoquinolinone scaffolds. Journal of Heterocyclic Chemistry, 2010, 47, 998-1003.	2.6	4
154	(+)-7-Bromotrypargine: an antimalarial β-carboline from the Australian marine sponge Ancorina sp Tetrahedron Letters, 2010, 51, 583-585.	1.4	65
155	Antitrypanosomal pyridoacridine alkaloids from the Australian ascidian Polysyncraton echinatum. Tetrahedron Letters, 2010, 51, 2477-2479.	1.4	42
156	Botryllamides K and L, new tyrosine derivatives from the Australian ascidian Aplidium altarium. Tetrahedron Letters, 2010, 51, 3403-3405.	1.4	23
157	Pseudoceratinazole A: a novel bromotyrosine alkaloid from the Australian sponge Pseudoceratina sp Tetrahedron Letters, 2010, 51, 4847-4850.	1.4	25
158	7′,8′-Dihydroobolactone, a typanocidal α-pyrone from the rainforest tree Cryptocarya obovata. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4057-4059.	2.2	34
159	Chemical investigation of drug-like compounds from the Australian tree, Neolitsea dealbata. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5859-5863.	2.2	14
160	New Galloylated Flavanonols from the Australian Plant <i>Glochidion sumatranum</i> . Planta Medica, 2010, 76, 1877-1881.	1.3	14
161	Hasubanan Alkaloids with δ-Opioid Binding Affinity from the Aerial Parts of <i>Stephania japonica</i> . Journal of Natural Products, 2010, 73, 988-991.	3.0	32
162	A Bastadin with Potent and Selective δ-Opioid Receptor Binding Affinity from the Australian Sponge <i>lanthella flabelliformis</i> . Journal of Natural Products, 2010, 73, 1173-1176.	3.0	27

#	Article	IF	CITATIONS
163	R-(–)-β-O-methylsynephrine, a natural product, inhibits VECF-induced angiogenesis in vitro and in vivo. Biochemical and Biophysical Research Communications, 2010, 399, 20-23.	2.1	9
164	Antitrypanosomal Cyclic Polyketide Peroxides from the Australian Marine Sponge <i>Plakortis</i> sp Journal of Natural Products, 2010, 73, 716-719.	3.0	45
165	Antimalarial Bromotyrosine Derivatives from the Australian Marine Sponge <i>Hyattella</i> sp Journal of Natural Products, 2010, 73, 985-987.	3.0	62
166	Caelestines Aâ^'D, Brominated Quinolinecarboxylic Acids from the Australian Ascidian <i>Aplidium caelestis</i> . Journal of Natural Products, 2010, 73, 1586-1589.	3.0	19
167	The Identification of Bioactive Natural Products by High Throughput Screening (HTS). , 2010, , 177-203.		7
168	The Identification of Bioactive Natural Products by High Throughput Screening (HTS). , 2010, , 410-429.		0
169	Cytotoxic agarofurans from the seeds of the Australian rainforest vine Celastrus subspicata. Phytochemistry Letters, 2009, 2, 163-165.	1.2	13
170	(â^')-Dibromophakellin: An α2B adrenoceptor agonist isolated from the Australian marine sponge, Acanthella costata. Bioorganic and Medicinal Chemistry, 2009, 17, 2497-2500.	3.0	20
171	Antimalarial Activity of Azafluorenone Alkaloids from the Australian Tree <i>Mitrephora diversifolia</i> . Journal of Natural Products, 2009, 72, 1538-1540.	3.0	74
172	Guttiferones O and P, Prenylated Benzophenone MAPKAPK-2 Inhibitors from <i>Garcinia solomonensis</i> . Journal of Natural Products, 2009, 72, 1699-1701.	3.0	9
173	Clavatadines Câ^E, Guanidine Alkaloids from the Australian Sponge <i>Suberea clavata</i> . Journal of Natural Products, 2009, 72, 973-975.	3.0	41
174	Antimalarial Benzylisoquinoline Alkaloid from the Rainforest Tree <i>Doryphora sassafras</i> . Journal of Natural Products, 2009, 72, 1541-1543.	3.0	50
175	Synthesis of Four Novel Natural Product Inspired Scaffolds for Drug Discovery. Journal of Organic Chemistry, 2009, 74, 1304-1313.	3.2	33
176	Non-Zinc Mediated Inhibition of Carbonic Anhydrases: Coumarins Are a New Class of Suicide Inhibitors. Journal of the American Chemical Society, 2009, 131, 3057-3062.	13.7	457
177	Flinderoles Aâ^'C: Antimalarial Bis-indole Alkaloids from <i>Flindersia</i> Species. Organic Letters, 2009, 11, 329-332.	4.6	212
178	Small-molecule inhibitors of the cancer target, isoprenylcysteine carboxyl methyltransferase, from Hovea parvicalyx. Phytochemistry, 2008, 69, 1886-1889.	2.9	24
179	Lysianadioic acid, a carboxypeptidase B inhibitor from Lysiana subfalcata. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1495-1497.	2.2	7
180	Developing a Drug-like Natural Product Library. Journal of Natural Products, 2008, 71, 464-468.	3.0	169

#	Article	IF	CITATIONS
181	Corymbones A and B, Phloroglucinols with Thyrotropin Releasing Hormone Receptor 2 Binding Affinity from the Flowers of <i>Corymbia peltata</i> . Journal of Natural Products, 2008, 71, 881-883.	3.0	19
182	Spongian Diterpenes with Thyrotropin Releasing Hormone Receptor 2 Binding Affinity from <i>Spongia</i> sp Journal of Natural Products, 2008, 71, 884-886.	3.0	15
183	Myrtucommulones Fâ^'l, Phloroglucinols with Thyrotropin-Releasing Hormone Receptor-2 Binding Affinity from the Seeds of <i>Corymbia scabrida</i> . Journal of Natural Products, 2008, 71, 1564-1568.	3.0	33
184	lanthesine E, a new bromotyrosine-derived metabolite from the Great Barrier Reef sponge <i>Pseudoceratina</i> sp Natural Product Research, 2008, 22, 1257-1263.	1.8	22
185	Prenylated Dihydrochalcones from <i>Boronia bipinnata</i> that Inhibit the Malarial Parasite Enzyme Target Hemoglobinase II. Journal of Natural Products, 2008, 71, 1479-1480.	3.0	15
186	Pim2 Inhibitors from the Papua New Guinean Plant Cupaniopsis macropetala. Journal of Natural Products, 2008, 71, 451-452.	3.0	9
187	Direct Screening of Natural Product Extracts Using Mass Spectrometry. Journal of Biomolecular Screening, 2008, 13, 265-275.	2.6	115
188	Polydiscamides Bâ^'D from a Marine Sponge <i>Ircinia</i> sp <i>.</i> as Potent Human Sensory Neuron-Specific G Protein Coupled Receptor Agonists. Journal of Natural Products, 2008, 71, 8-11.	3.0	38
189	Aplysamine 6, an Alkaloidal Inhibitor of Isoprenylcysteine Carboxyl Methyltransferase from the Sponge <i>Pseudoceratina</i> sp Journal of Natural Products, 2008, 71, 1066-1067.	3.0	46
190	Exiguaquinol: A Novel Pentacyclic Hydroquinone from Neopetrosia exigua that Inhibits Helicobacter pylori Murl. Organic Letters, 2008, 10, 2585-2588.	4.6	53
191	Alkaloids from the Australian Rainforest TreeOchrosia moorei. Journal of Natural Products, 2008, 71, 1063-1065.	3.0	26
192	Determination of Analyte Concentration Using the Residual Solvent Resonance in ¹ H NMR Spectroscopy. Journal of Natural Products, 2008, 71, 810-813.	3.0	51
193	Clavatadine A, A Natural Product with Selective Recognition and Irreversible Inhibition of Factor XIa. Journal of Medicinal Chemistry, 2008, 51, 3583-3587.	6.4	72
194	Vanillic Acid Derivatives from the Green Algae <i>Cladophora socialis</i> As Potent Protein Tyrosine Phosphatase 1B Inhibitors. Journal of Natural Products, 2007, 70, 1790-1792.	3.0	61
195	Endiandrin A, a Potent Glucocorticoid Receptor Binder Isolated from the Australian Plant Endiandra anthropophagorum. Journal of Natural Products, 2007, 70, 1118-1121.	3.0	40
196	Progress toward Establishing an Open Access Molecular Screening Capability in the Australasian Region. ACS Chemical Biology, 2007, 2, 764-767.	3.4	3
197	Niphatoxin C, a Cytotoxic Tripyridine Alkaloid from <i>Callyspongia</i> sp Journal of Natural Products, 2007, 70, 2040-2041.	3.0	23
198	Psammaplysenes C and D, Cytotoxic Alkaloids from <i>Psammoclemma</i> sp Journal of Natural Products, 2007, 70, 1827-1829.	3.0	24

#	Article	IF	CITATIONS
199	Natural Products, Stylissadines A and B, Specific Antagonists of the P2X7Receptor, an Important Inflammatory Target1. Journal of Organic Chemistry, 2007, 72, 2309-2317.	3.2	108
200	Aporphine Alkaloids from the Chinese Tree Neolitsea Aurata Var. Paraciculata. Natural Product Communications, 2007, 2, 1934578X0700200.	0.5	1
201	Identification of Protein Fold Topology Shared between Different Folds Inhibited by Natural Products. ChemBioChem, 2007, 8, 788-798.	2.6	40
202	NMR spectral assignments of a new chlorotryptamine alkaloid and its analogues fromAcacia confusa. Magnetic Resonance in Chemistry, 2007, 45, 359-361.	1.9	19
203	Revised structure of palau'amine. Tetrahedron Letters, 2007, 48, 4573-4574.	1.4	85
204	Identifying common metalloprotease inhibitors by protein fold types using Fourier Transform Mass Spectrometry. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6521-6524.	2.2	6
205	Spermatinamine, the first natural product inhibitor of isoprenylcysteine carboxyl methyltransferase, a new cancer target. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6860-6863.	2.2	53
206	4-Iodo-1H-pyrrole-2-carbaldehyde. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4076-o4076.	0.2	3
207	A Common Protein Fold Topology Shared by Flavonoid Biosynthetic Enzymes and Therapeutic Targets. Journal of Natural Products, 2006, 69, 14-17.	3.0	58
208	The absolute stereochemistry and cytotoxicity of the ascidian-derived metabolite, longithorone J. Natural Product Research, 2006, 20, 1277-1282.	1.8	6
209	Synthesis of 5-methylfuro[3,2-c]quinolin-4(5H)-one via palladium-catalysed cyclisation of N-(2-iodophenyl)-N-methyl-3-furamide. Tetrahedron Letters, 2006, 47, 7493-7495.	1.4	18
210	Tyrosine kinase inhibitors from the rainforest tree Polyscias murrayi. Phytochemistry, 2005, 66, 481-485.	2.9	9
211	A robust clustering approach for NMR spectra of natural product extracts. Magnetic Resonance in Chemistry, 2005, 43, 359-365.	1.9	22
212	4-(2-Thienyl)-1H-pyrrole-2-carbaldehyde. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o3401-o3402.	0.2	2
213	Latifolians A and B, Novel JNK3 Kinase Inhibitors from the Papua New Guinean PlantGnetumlatifolium. Journal of Natural Products, 2005, 68, 1080-1082.	3.0	28
214	Petrosamine B, an Inhibitor of theHelicobacterpyloriEnzyme Aspartyl Semialdehyde Dehydrogenase from the Australian SpongeOceanapiasp Journal of Natural Products, 2005, 68, 804-806.	3.0	41
215	Actinophyllic Acid, a Potent Indole Alkaloid Inhibitor of the Coupled Enzyme Assay Carboxypeptidase U/Hippuricase from the Leaves ofAlstoniaactinophylla(Apocynaceae). Journal of Organic Chemistry, 2005, 70, 1096-1099.	3.2	101
216	Acutangulosides Aâ^'F, Monodesmosidic Saponins from the Bark of Barringtonia acutangula. Journal of Natural Products, 2005, 68, 311-318.	3.0	25

#	Article	IF	CITATIONS
217	Perspicamides A and B, Quinolinecarboxylic Acid Derivatives from the Australian AscidianBotrylloidesperspicuum. Journal of Natural Products, 2005, 68, 1776-1778.	3.0	23
218	Grandisine A and B, Novel Indolizidine Alkaloids with Human δ-Opioid Receptor Binding Affinity from the Leaves of the Australian Rainforest Tree Elaeocarpus grandis. Journal of Organic Chemistry, 2005, 70, 1889-1892.	3.2	53
219	4-Amino-2,6-dichloro-5-nitropyrimidine. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, o241-o243.	0.2	0
220	4-Amino-2-chloro-5-nitro-6-(propylamino)pyrimidine. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, o1260-o1262.	0.2	1
221	Dysinosins Bâ~'D, Inhibitors of Factor VIIa and Thrombin from the Australian Sponge Lamellodysidea chlorea. Journal of Natural Products, 2004, 67, 1291-1294.	3.0	66
222	Phospholipase A2 in porifera. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2004, 137, 413-420.	1.6	26
223	Phospholipase A2 in Cnidaria. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2004, 139, 731-735.	1.6	128
224	Zwitterionic 2-(methylamino)ethanesulfonic acid. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o726-o727.	0.2	3
225	Age Differences in Sentence Production. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2003, 58, P260-P268.	3.9	48
226	Study of the Novel Non-xanthine Heterocyclic Compound GU285 as a Potent Non-selective Adenosine Receptor Antagonist in the Rat. Arzneimittelforschung, 2002, 52, 175-181.	0.4	1
227	Australian biodiversity via its plants and marine organisms. A high-throughput screening approach to drug discovery. Pure and Applied Chemistry, 2002, 74, 519-526.	1.9	24
228	The Synthesis of Two Combinatorial Libraries Using a 4-(2-Thienyl)-pyrrole Template. Australian Journal of Chemistry, 2002, 55, 789.	0.9	7
229	Lepadins Fâ^'H, Newcis-Decahydroquinoline Alkaloids from the Australian AscidianAplidiumtabascum. Journal of Natural Products, 2002, 65, 454-457.	3.0	52
230	1,2-Bis(1H-indol-3-yl)ethane-1,2-dione, an Indole Alkaloid from the Marine SpongeSmenospongiasp Journal of Natural Products, 2002, 65, 595-597.	3.0	45
231	Naturally Occurring Cembranes from an AustralianSarcophytonSpecies. Journal of Natural Products, 2002, 65, 1147-1150.	3.0	20
232	Dysinosin A:Â A Novel Inhibitor of Factor VIIa and Thrombin from a New Genus and Species of Australian Sponge of the Family Dysideidae. Journal of the American Chemical Society, 2002, 124, 13340-13341.	13.7	107
233	Title is missing!. Biodiversity and Conservation, 2002, 11, 851-885.	2.6	82
234	A Benzylisoquinoline Alkaloid fromDoryphorasassafras. Journal of Natural Products, 2001, 64, 1572-1573.	3.0	8

#	Article	IF	CITATIONS
235	Cheilanthane Sesterterpenes, Protein Kinase Inhibitors, from a Marine Sponge of the GenusIrcinia. Journal of Natural Products, 2001, 64, 300-303.	3.0	42
236	High-pressure synthesis of enantiomerically pure C-6 substituted pyrazolo[3,4- d]pyrimidines. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 191-193.	2.2	13
237	The Synthesis of a Combinatorial Library Using a Tambjamine Natural Product Template. Australian Journal of Chemistry, 2001, 54, 355.	0.9	29
238	A study of the binding requirements of calyculin A and dephosphonocalyculin A with PP1, development of a molecular recognition model for the binding interactions of the okadaic acid class of compounds with PP1. European Journal of Pharmaceutical Sciences, 2001, 12, 181-194.	4.0	10
239	1-Phenylpyrazolo[3,4- d]pyrimidines; structure–activity relationships for C6 substituents at A 1 and A 2A adenosine receptors. Bioorganic and Medicinal Chemistry, 2000, 8, 2581-2590.	3.0	22
240	Anhydride modified cantharidin analogues. Is ring opening important in the inhibition of protein phosphatase 2A?. European Journal of Medicinal Chemistry, 2000, 35, 957-964.	5.5	49
241	Polyoxygenated Dysidea Sterols That Inhibit the Binding of [1125] IL-8 to the Human Recombinant IL-8 Receptor Type A. Journal of Natural Products, 2000, 63, 694-697.	3.0	42
242	Anthoptilides Aâ^'E, New Briarane Diterpenes from the Australian Sea PenAnthoptilumcf.kukenthali. Journal of Natural Products, 2000, 63, 318-321.	3.0	11
243	10-Hydroxydarlingine, a New Tropane Alkaloid from the Australian Proteaceous Plant Triunia erythrocarpa. Journal of Natural Products, 2000, 63, 688-689.	3.0	11
244	Isolation of Psammaplin A 11â€~-Sulfate and Bisaprasin 11â€~-Sulfate from the Marine SpongeAplysinellarhax. Journal of Natural Products, 2000, 63, 393-395.	3.0	39
245	Tropane alkaloids from Darlingia darlingiana. Phytochemistry, 1999, 52, 529-531.	2.9	18
246	The solution structures of calyculin A and dephosphonocalyculin A by NMR. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 717-722.	2.2	10
247	Adenosine receptors as potential therapeutic targets. Drug Discovery Today, 1999, 4, 542-551.	6.4	58
248	High-throughput screening in natural product drug discovery in Australia utilising Australia's biodiversity. Drug Development Research, 1999, 46, 250-254.	2.9	11
249	Axinellamines Aâ^'D, Novel Imidazoâ^'Azoloâ^'Imidazole Alkaloids from the Australian Marine SpongeAxinellasp Journal of Organic Chemistry, 1999, 64, 731-735.	3.2	136
250	Sideroxylonal C, a New Inhibitor of Human Plasminogen Activator Inhibitor Type-1, from the Flowers ofEucalyptus albens. Journal of Natural Products, 1999, 62, 324-326.	3.0	30
251	Longithorols Câ^'E. Three New Macrocyclic Sesquiterpene Hydroquinone Metabolites from the Australian Ascidian, Aplidium longithorax. Journal of Natural Products, 1999, 62, 1405-1409.	3.0	20
252	Prunolides A, B, and C:  Novel Tetraphenolic Bis-Spiroketals from the Australian Ascidian Synoicum prunum. Journal of Organic Chemistry, 1999, 64, 2680-2682.	3.2	36

#	Article	IF	CITATIONS
253	Isolation of Xestosterol Esters of Brominated Acetylenic Fatty Acids from the Marine Sponge Xestospongia testudinaria. Journal of Natural Products, 1999, 62, 1439-1442.	3.0	30
254	Longithorones J and K, Two New Cyclofarnesylated Quinone Derived Metabolites from the Australian Ascidian Aplidium longithorax. Journal of Natural Products, 1999, 62, 158-160.	3.0	33
255	Adociasulfates 1, 7, and 8:Â New Bioactive Hexaprenoid Hydroquinones from the Marine SpongeAdociasp Journal of Organic Chemistry, 1999, 64, 5571-5574.	3.2	33
256	New Lamellarin Alkaloids from the Australian Ascidian,Didemnum chartaceum. Journal of Natural Products, 1999, 62, 419-424.	3.0	125
257	Adociasulfate-9, a New Hexaprenoid Hydroquinone from the Great Barrier Reef SpongeAdociaaculeata. Journal of Natural Products, 1999, 62, 1682-1684.	3.0	14
258	Adenosine receptors: new opportunities for future drugs. Bioorganic and Medicinal Chemistry, 1998, 6, 619-641.	3.0	284
259	Diimidazo[1,2-c:4′,5′-e]pyrimidines: N6-N1 conformationally restricted adenosines. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 695-698.	2.2	6
260	Diimidazo[1,2-c:4′,5′-e]pyrimidines: Adenosine agonist activity demonstrated by microphysiometry. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 691-694.	2.2	2
261	Eudistomin V, a New Î ² -Carboline from the Australian Ascidian Pseudodistoma aureum. Journal of Natural Products, 1998, 61, 959-960.	3.0	37
262	1-Phenylpyrazolo[3,4-d]pyrimidines as adenosine antagonists: the effects of substituents at C4 and C6. Bioorganic and Medicinal Chemistry, 1997, 5, 311-322.	3.0	12
263	<title>Visualization tool for simulating ligand-receptor binding process</title> . , 1996, , .		Ο
264	Synthesis and Structureâ^'Activity Relationship of Pyrazolo[3,4-d]pyrimidines:Â Potent and Selective Adenosine A1Receptor Antagonists. Journal of Medicinal Chemistry, 1996, 39, 4156-4161.	6.4	32
265	Inhibition of protein phosphatase 2A by cyclic peptides modelled on the microcystin ring. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 2113-2116.	2.2	21
266	Pyrazolo[3,4-d]pyrimidines: C4, C6 substitution leads to adenosine A1 receptor selectivity. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 357-360.	2.2	12
267	Inhibition of protein phosphatase 2A by cantharidin analogues. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1025-1028.	2.2	40
268	Synthesis of cyclic peptides modelled on the microcystin and nodularin rings. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 2107-2112.	2.2	14
269	Pyrazolo[3,4-d]pyrimidines; adenosine receptor selectivity. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 2409-2412.	2.2	9
270	The conserved acid binding domain model of inhibitors of protein phosphatases 1 and 2A: Molecular modelling aspects Bioorganic and Medicinal Chemistry Letters, 1993, 3, 1029-1034.	2.2	38

#	Article	IF	CITATIONS
271	Reversible depigmentation of human melanoma cells by halistanol trisulphate, a novel marine sterol. Melanoma Research, 1992, 1, 349-358.	1.2	9
272	Isomers of a marine diterpene distinguish sublines of human melanoma cells on the basis of apoptosis, cell cycle arrest and differentiation markers. Melanoma Research, 1992, 1, 359-366.	1.2	10
273	Critical micelle concentration and hemolytic activity — a correlation suggested by the marine sterol, halistanol trisulfate. Biochemical and Biophysical Research Communications, 1992, 182, 115-120.	2.1	11
274	The three binding domain model of adenosine receptors: molecular modeling aspects. Journal of Medicinal Chemistry, 1992, 35, 211-216.	6.4	27
275	An explanation of the substituent effect of 1,3,8-trisubstituted xanthines on adenosine A1/A2 affinity Bioorganic and Medicinal Chemistry Letters, 1992, 2, 1199-1200.	2.2	2
276	The role of arginine in interactions of microcystins with protein phosphatases 1 and 2a. Bioorganic and Medicinal Chemistry Letters, 1992, 2, 673-676.	2.2	8
277	A note of caution in the use of receptor binding assays to screen marine organisms: the action of halistanol trisulphate on adenosine receptors Bioorganic and Medicinal Chemistry Letters, 1992, 2, 1631-1634.	2.2	1
278	An alternative computer model of the 3-dimensional structural of microcystin-LR and nodularin rationalising their interactions with protein phosphatases 1 and 2A. Bioorganic and Medicinal Chemistry Letters, 1992, 2, 299-302.	2.2	16
279	Synthesis of 2-Substituted Pyrazolo[3,4-d]pyrimidines. Australian Journal of Chemistry, 1991, 44, 1795.	0.9	9
280	A Computer Generated Model of Adenosine Receptors Rationalising Binding and Selectivity of Receptor Ligands. Nucleosides & Nucleotides, 1991, 10, 1121-1124.	0.5	10
281	4-Amino-1-phenylpyrazolo[3,4-d]pyrimidin-6(5h)-one, an Isoguanosine Analog. Australian Journal of Chemistry, 1991, 44, 1001.	0.9	5
282	Further Acetylenic Acids from the Marine Sponge Xestospongia testudinaria. Journal of Natural Products, 1991, 54, 290-294.	3.0	28
283	Structural Elucidation of a Novel Scalarane Derivative by Using High-Field (14.1T) N.M.R. Spectroscopy. Australian Journal of Chemistry, 1991, 44, 995.	0.9	9
284	Cyclopentylamine substituted triazolo[4,5-d]pyrimidine: implications for binding to the adenosine receptor. Tetrahedron Letters, 1991, 32, 3583-3584.	1.4	8
285	Synthesis and adenosine receptor affinity of a series of pyrazolo[3,4-d]pyrimidine analogs of 1-methylisoguanosine. Journal of Medicinal Chemistry, 1991, 34, 2892-2898.	6.4	33
286	Pyrazolo[3,4-d]pyrimidine analogues of isoguanine. Tetrahedron Letters, 1991, 32, 6787-6788.	1.4	10
287	Mono-α-carbamoylethylthio-Substituted Pyrazolo[3,4-d]pyrimidines: the Position of Substitution. Australian Journal of Chemistry, 1991, 44, 753.	0.9	14
288	Synthesis of a pyrimidine by elimination of nitrogen from a triazolo[4,5-d]pyrimidine. Tetrahedron Letters, 1990, 31, 6103-6104.	1.4	5

#	Article	IF	CITATIONS
289	Two Novel Bisalkylated Norscalaranes From the Sponge Carteriospongia foliascens. Australian Journal of Chemistry, 1989, 42, 751.	0.9	10
290	Synthesis of 5-Aminopyrazole-4-carbonitriles. Australian Journal of Chemistry, 1989, 42, 747.	0.9	9
291	Chemistry of Aqueous Marine Extracts: Isolation Techniques. Bioorganic Marine Chemistry, 1988, , 1-41.	0.2	9
292	Isolation of symbiotic dinoflagellates by centrifugal elutriation1. Limnology and Oceanography, 1986, 31, 225-228.	3.1	4
293	A brominated bisacetylenic acid from the marine sponge. Tetrahedron Letters, 1985, 26, 1671-1672.	1.4	40
294	ANTAGONISM BY MANGANESE OF ISOPRENALINE DILATATION OF THE GUINEA-PIG ISOLATED TRACHEA. Clinical and Experimental Pharmacology and Physiology, 1983, 10, 511-519.	1.9	4
295	Synthese stereoisomerer Pinanthromboxane und Evaluation der Verbindungen als Plätchenaggregationsinhibitoren. Helvetica Chimica Acta, 1983, 66, 989-1008.	1.6	5
296	Amberlite XAD-7 as a Chromatographic Absorbent. Journal of Chromatographic Science, 1982, 20, 475-478.	1.4	8
297	The occurrence of 5-hydroxytryptamine in the holothurian,Pentacter crassa. Experientia, 1981, 37, 930-931.	1.2	1
298	3-Hydroxy-4-methoxyphenethylamine, the cardioactive constituent of a soft coral. Experientia, 1981, 37, 493-494.	1.2	5
299	Stimulation of guinea-pig brain adenylate cyclase by adenosine analogues with potent pharmacological activity. Life Sciences, 1980, 26, 1079-1088.	4.3	34
300	13C n.m.r. spin–lattice relaxation time measurements determining the major tautomer of 1-methylisoguanosine in solution. Journal of the Chemical Society Chemical Communications, 1980, , 339-341.	2.0	13
301	1-Methylisoguanosine, a pharmacologically active agent from a marine sponge. Journal of Organic Chemistry, 1980, 45, 4020-4025.	3.2	60
302	Fluorine Is a Major Constituent of the Marine Sponge Halichondria moorei. Science, 1979, 206, 1108-1109.	12.6	22
303	The occurrence of prostaglandins PGE2 and PGF2α in a plant - the red alga Tetrahedron Letters, 1979, 20, 4505-4506.	1.4	69
304	L-Azetidine-2-carboxylic acid, the antidermatophyte constituent of two marine sponges. Experientia, 1978, 34, 688-688.	1.2	11
305	Maculotoxin: a neurotoxin from the venom glands of the octopus Hapalochlaena maculosa identified as tetrodotoxin. Science, 1978, 199, 188-189.	12.6	230
306	Characterization of the neurotoxic constituents of Conus geographus (L) venom. Life Sciences, 1977, 21, 1759-1769.	4.3	55

#	Article	IF	CITATIONS
307	Aplysinopsin, a new tryptophan derivative from a sponge. Tetrahedron Letters, 1977, 18, 61-64.	1.4	92
308	New laurene derivatives from Laurencia filiformis. Australian Journal of Chemistry, 1976, 29, 2533.	0.9	59
309	Tetradehydrofurospongin-1, a new C-21 furanoterpene from a sponge. Tetrahedron Letters, 1976, 17, 1331-1332.	1.4	13
310	Anticancer Activity of Zoanthids and the Associated Toxin, Palytoxin, against Ehrlich Ascites Tumor and P-388 Lymphocytic Leukemia in Mice. Journal of Pharmaceutical Sciences, 1974, 63, 257-260.	3.3	35
311	Antitumor Activity and Cardiac Stimulatory Effects of Constituents of Anthopleura elegantissima. Journal of Pharmaceutical Sciences, 1974, 63, 1798-1800.	3.3	7
312	Isolate from the Annelid, Reteterebella queenslandia (Australia), Active against Ehrlich Ascites Tumor. Journal of Pharmaceutical Sciences, 1973, 62, 1464-1468.	3.3	1
313	Synthesis of cis-Bicyclo[4,4,0]deca-2,8-dien-4-one. Australian Journal of Chemistry, 1973, 26, 595.	0.9	5