Beverley R Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4321374/publications.pdf

Version: 2024-02-01

57758 31849 10,806 125 44 101 citations h-index g-index papers 131 131 131 7368 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Proteomic analysis of metabolic pathways supports chloroplast–mitochondria crossâ€ŧalk in a Cu″imited diatom. Plant Direct, 2022, 6, e376.	1.9	6
2	Scaffolding proteins guide the evolution of algal light harvesting antennas. Nature Communications, 2021, 12, 1890.	12.8	11
3	Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
4	What Happened to the Phycobilisome?. Biomolecules, 2019, 9, 748.	4.0	25
5	Proteomic analysis of the phycobiliprotein antenna of the cryptophyte alga Guillardia theta cultured under different light intensities. Photosynthesis Research, 2018, 135, 149-163.	2.9	19
6	Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature, 2017, 541, 536-540.	27.8	332
7	Insights into the red algae and eukaryotic evolution from the genome of <i>Porphyra umbilicalis</i> (Bangiophyceae, Rhodophyta). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6361-E6370.	7.1	233
8	Contrasting effects of copper limitation on the photosynthetic apparatus in two strains of the open ocean diatom Thalassiosira oceanica. PLoS ONE, 2017, 12, e0181753.	2.5	24
9	Sequence Analysis and Gene Expression of Potential Components of Copper Transport and Homeostasis in Thalassiosira pseudonana. Protist, 2015, 166, 58-77.	1.5	30
10	Spectroscopic Studies of Cryptophyte Light Harvesting Proteins: Vibrations and Coherent Oscillations. Journal of Physical Chemistry B, 2015, 119, 10025-10034.	2.6	50
11	Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light-harvesting proteins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2666-75.	7.1	65
12	Mitochondrial Genes of Dinoflagellates Are Transcribed by a Nuclear-Encoded Single-Subunit RNA Polymerase. PLoS ONE, 2013, 8, e65387.	2.5	4
13	Proteomic Amino-Termini Profiling Reveals Targeting Information for Protein Import into Complex Plastids. PLoS ONE, 2013, 8, e74483.	2.5	41
14	Differential Association of the Light-Harvesting Proteins (FCPs) with PSI and PSII in the Small Brown Tide Alga Aureococcus Anophagefferens. Advanced Topics in Science and Technology in China, 2013, , 148-151.	0.1	0
15	Photosystem II Photoinactivation, Repair, and Protection in Marine Centric Diatoms Â. Plant Physiology, 2012, 160, 464-476.	4.8	86
16	Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 2012, 492, 59-65.	27.8	377
17	<i>Cyanophora paradoxa</i> Genome Elucidates Origin of Photosynthesis in Algae and Plants. Science, 2012, 335, 843-847.	12.6	371
18	The harmful alga Aureococcus anophagefferens utilizes $19\hat{a}\in^2$ -butanoyloxyfucoxanthin as well as xanthophyll cycle carotenoids in acclimating to higher light intensities. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1557-1564.	1.0	20

#	Article	IF	CITATIONS
19	Complex repeat structures and novel features in the mitochondrial genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. Gene, 2011, 476, 20-26.	2.2	85
20	Chloroplast genomes of photosynthetic eukaryotes. Plant Journal, 2011, 66, 34-44.	5.7	300
21	High light stress and the one-helix LHC-like proteins of the cryptophyte Guillardia theta. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 841-846.	1.0	23
22	After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c. Photosynthesis Research, 2011, 107, 103-115.	2.9	71
23	Photoprotection in the diatom Thalassiosira pseudonana: Role of LI818-like proteins in response to high light stress. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1449-1457.	1.0	173
24	EFFECTS OF IRON AND COPPER DEFICIENCY ON THE EXPRESSION OF MEMBERS OF THE LIGHT-HARVESTING FAMILY IN THE DIATOM THALASSIOSIRA PSEUDONANA (BACILLARIOPHYCEAE)1. Journal of Phycology, 2010, 46, 974-981.	2.3	19
25	Long Transcripts from Dinoflagellate Chloroplast Minicircles Suggest "Rolling Circle― Transcription. Journal of Biological Chemistry, 2010, 285, 5196-5203.	3.4	25
26	Substitutional editing of Heterocapsa triquetra chloroplast transcripts and a folding model for its divergent chloroplast 16S rRNA. Gene, 2009, 442, 73-80.	2.2	39
27	The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 2008, 456, 239-244.	27.8	1,458
28	Light-Harvesting and Photoprotection in Diatoms: Identification and Expression of L818-Like Proteins. , 2008, , $261-264$.		14
29	Surviving the passage. Plant Signaling and Behavior, 2008, 3, 6-12.	2.4	11
30	Evolution of Light-Harvesting Antennas in an Oxygen World., 2007,, 37-53.		9
31	Identification and transcription of transfer RNA genes in dinoflagellate plastid minicircles. Gene, 2007, 392, 291-298.	2.2	30
32	Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage. Molecular Genetics and Genomics, 2007, 277, 427-439.	2.1	184
33	Protein Targeting in â€~â€~Secondary'' or â€~â€~Complex'' Chloroplasts. , 2007, 390, 207-217.		0
34	LATERAL GENE TRANSFER IN THE CYANOBACTERIA: CHLOROPHYLLS, PROTEINS, AND SCRAPS OF RIBOSOMAL RNA. Journal of Phycology, 2005, 41, 449-452.	2.3	6
35	Simulation of Pulse-Amplitude-Modulated (PAM) fluorescence: Limitations of some PAM-parameters in studying environmental stress effects. Photosynthetica, 2005, 43, 75-83.	1.7	86
36	Protein import pathways in ?complex? chloroplasts derived from secondary endosymbiosis involving a red algal ancestor. Plant Molecular Biology, 2005, 57, 333-342.	3.9	23

#	Article	IF	CITATIONS
37	Mosaic Origin of the Heme Biosynthesis Pathway in Photosynthetic Eukaryotes. Molecular Biology and Evolution, 2005, 22, 2343-2353.	8.9	152
38	Double hairpin elements and tandem repeats in the non-coding region of Adenoides eludens chloroplast gene minicircles. Gene, 2005, 358, 102-110.	2.2	24
39	Distal and Extrinsic Photosystem II Antennas. , 2005, , 23-44.		6
40	How the chlorophyll-proteins got their names. , 2005, , 435-442.		0
41	The Chloroplast Genome of Dinoflagellates? A Reduced Instruction Set?. Protist, 2004, 155, 23-31.	1.5	34
42	How the Chlorophyll-Proteins got their Names. Photosynthesis Research, 2004, 80, 189-196.	2.9	17
43	The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism. Science, 2004, 306, 79-86.	12.6	1,862
44	A thylakoidal processing peptidase from the heterokont alga Heterosigma akashiwo. Plant Molecular Biology, 2003, 52, 463-472.	3.9	13
45	Photosynthetic Membranes and Their Light-Harvesting Antennas. Advances in Photosynthesis and Respiration, 2003, , 1 -28.	1.0	25
46	The Evolution of Light-harvesting Antennas. Advances in Photosynthesis and Respiration, 2003, , 129-168.	1.0	41
47	Second- and third-hand chloroplasts in dinoflagellates: Phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9294-9299.	7.1	150
48	Evolution of Dinoflagellate Unigenic Minicircles and the Partially Concerted Divergence of Their Putative Replicon Origins. Molecular Biology and Evolution, 2002, 19, 489-500.	8.9	69
49	A Family of Selfish Minicircular Chromosomes with Jumbled Chloroplast Gene Fragments from a Dinoflagellate. Molecular Biology and Evolution, 2001, 18, 1558-1565.	8.9	45
50	ENDOMEMBRANE STRUCTURE AND THE CHLOROPLAST PROTEIN TARGETING PATHWAY INHETEROSIGMA AKASHIWO (RAPHIDOPHYCEAE, CHROMISTA). Journal of Phycology, 2000, 36, 1135-1144.	2.3	48
51	IS PHOTOSYNTHESIS REALLY DERIVED FROM PURPLE BACTERIA?. Journal of Phycology, 2000, 36, 983-985.	2.3	10
52	Phylogeny of Ultra-Rapidly Evolving Dinoflagellate Chloroplast Genes: A Possible Common Origin for Sporozoan and Dinoflagellate Plastids. Journal of Molecular Evolution, 2000, 51, 26-40.	1.8	162
53	Diversification of a Chimaeric Algal Group, the Chlorarachniophytes: Phylogeny of Nuclear and Nucleomorph Small-Subunit rRNA Genes. Molecular Biology and Evolution, 1999, 16, 321-331.	8.9	82
54	A Phylogenetic Assessment of the Eukaryotic Light-Harvesting Antenna Proteins, with Implications for Plastid Evolution. Journal of Molecular Evolution, 1999, 48, 59-68.	1.8	230

#	Article	IF	Citations
55	Title is missing!. Plant Molecular Biology Reporter, 1999, 17, 221-224.	1.8	14
56	Single gene circles in dinoflagellate chloroplast genomes. Nature, 1999, 400, 155-159.	27.8	337
57	The 38 kDa chlorophyll a/b protein of the prokaryote Prochlorothrix hollandica is encoded by a divergent pcb gene. Plant Molecular Biology, 1998, 36, 709-716.	3.9	45
58	Relationship of chlorophyll, seed moisture and ABA levels in the maturing Brassica napus seed and effect of a mild freezing stress. Physiologia Plantarum, 1998, 104, 125-133.	5.2	16
59	Solutions to the Light-Harvesting Problem: Mix, Match and Duplicate. , 1998, , 247-252.		0
60	hcf5, a Nuclear Photosynthetic Electron Transport Mutant of Arabidopsis thaliana with a Pleiotropic Effect on Chloroplast Gene Expression. Plant Physiology, 1997, 113, 1023-1031.	4.8	23
61	Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 15244-15248.	7.1	223
62	The fucoxanthin-chlorophyll proteins from a chromophyte alga are part of a large multigene family: structural and evolutionary relationships to other light harvesting antennae. Molecular Genetics and Genomics, 1996, 253, 377-386.	2.4	49
63	Sequence conservation of light-harvesting and stress-response proteins in relation to the three-dimensional molecular structure of LHCII. Photosynthesis Research, 1995, 44, 139-148.	2.9	136
64	The Nuclear-encoded Chlorophyll-binding Photosystem II-S Protein Is Stable in the Absence of Pigments. Journal of Biological Chemistry, 1995, 270, 30141-30147.	3.4	70
65	Characterization of a cDNA Encoding a Fucoxanthin-Chlorophyll Protein from the Chromophyte Alga Heterosigma carterae. , 1995, , 963-966.		4
66	Nucleotide Sequence of a Tomato psbS Gene. Plant Physiology, 1994, 106, 1703-1704.	4.8	10
67	A nuclear photosynthetic electron transport mutant of Arabidopsis thaliana with altered expression of the chloroplast petA gene. Current Genetics, 1994, 25, 282-288.	1.7	19
68	Separation of closely related intrinsic membrane polypeptides of the photosystem II light-harvesting complex (LHC II) by reversed-phase high-performance liquid chromatography on a poly(styrene—divinylbenzene) column. Journal of Chromatography A, 1994, 664, 33-38.	3.7	11
69	Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature, 1994, 367, 566-568.	27.8	187
70	Characterization of the light harvesting proteins of the chromophytic alga, Olisthodiscus luteus (Heterosigma carterae). Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1184, 118-126.	1.0	19
71	The intrinsic 22 kDa protein is a chlorophyll-binding subunit of photosystem II. FEBS Letters, 1994, 342, 261-266.	2.8	64
72	Nucleotide Sequence of an Arabidopsis thaliana Lhcb4 Gene. Plant Physiology, 1993, 103, 1451-1452.	4.8	14

#	Article	IF	Citations
73	Effects of Temperature on the Phase Behavior and Permeability of Thylakoid Lipid Vesicles. Plant Physiology, 1992, 99, 912-918.	4.8	10
74	Identification of the polypeptides of the major light-harvesting complex of photosystem II (LHCII) with their genes in tomato. FEBS Letters, 1992, 305, 18-22.	2.8	29
75	Characterization of a spinachpsbScDNA encoding the 22 kDa protein of photosystem II. FEBS Letters, 1992, 314, 67-71.	2.8	99
76	A nomenclature for the genes encoding the chlorophylla/b-binding proteins of higher plants. Plant Molecular Biology Reporter, 1992, 10, 242-253.	1.8	155
77	Biochemical and biophysical properties of thylakoid acyl lipids. Biochimica Et Biophysica Acta - Bioenergetics, 1991, 1060, 133-158.	1.0	225
78	Chlorophyll a/b-binding proteins: an extended family. Trends in Biochemical Sciences, 1991, 16, 181-186.	7.5	273
79	Nucleotide sequence and chromosomal location of Cab11 and Cab12, the genes for the fourth polypeptide of the photosystem I light-harvesting antenna (LHCI). FEBS Letters, 1991, 280, 229-234.	2.8	53
80	Chlorophyll a/b binding (CAB) polypeptides of CP29, the internal chlorophyll a/b complex of PSII: characterization of the tomato gene encoding the 26 kDa (type 1) polypeptide, and evidence for a second CP29 polypeptide. Molecular Genetics and Genomics, 1991, 227, 277-284.	2.4	48
81	Sequence of a tomato gene encoding a third type of LHCII chlorophyll a/b-binding polypeptide. Plant Molecular Biology, 1991, 17, 923-925.	3.9	31
82	Effects of neutral and anionic lipids on digalactosyldiacylglycerol vesicle aggregation. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1030, 231-237.	2.6	24
83	STRUCTURE PREDICTION METHODS FOR MEMBRANE PROTEINS: COMPARISON WITH THE X-RAY STRUCTURE OF THE R. VIRIDIS PHOTOSYNTHETIC REACTION CENTRE. , 1990, , 395-404.		5
84	A new member of the CAB gene family: structure, expression and chromosomal location of Cab-8, the tomato gene encoding the Type III chlorophyll a/b-binding polypeptide of photosystem I. Plant Molecular Biology, 1989, 12, 257-270.	3.9	64
85	Permeability properties of large unilamellar vesicles of thylakoid lipids. Biochimica Et Biophysica Acta - Biomembranes, 1989, 984, 41-49.	2.6	18
86	The chlorophyll ab complex, CP29, is associated with the Photosystem II reaction centre core. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 974, 180-184.	1.0	49
87	Intermittent-light chloroplasts are not developmentally equivalent to chlorina f2 chloroplasts in barley. Photosynthesis Research, 1988, 15, 195-203.	2.9	25
88	The chlorophyll-protein complexes of higher plant photosynthetic membranes or Just what green band is that? Photosynthesis Research, 1988, 15, 3-32.	2.9	149
89	Salt-mediated interactions between vesicles of the thylakoid lipid digalactosyldiacylglycerol. Biochimica Et Biophysica Acta - Biomembranes, 1988, 938, 323-333.	2.6	40
90	Kinetically cooperative models: boundary movement in optical resolution, phase transitions, and biological morphogenesis. Canadian Journal of Chemistry, 1988, 66, 839-851.	1.1	1

#	Article	IF	Citations
91	Assocation of the 33 kDa extrinsic polypeptide (water-splitting) with PS II particles: immunochemical quantification of residual polypeptide after membrane extraction. Photosynthesis Research, 1987, 13, 69-80.	2.9	25
92	Copper in photosystem II: association with LHC II. Photosynthesis Research, 1987, 14, 201-209.	2.9	23
93	Antibodies to the photosystem I chlorophyll a+b antenna cross-react with polypeptides of CP29 and LHCII. FEBS Journal, 1987, 163, 545-551.	0.2	49
94	Polypeptides belonging to each of the three major chlorophyll a + b protein complexes are present in a chlorophyll-b-less barley mutant. FEBS Journal, 1987, 165, 531-535.	0.2	56
95	Copper in Photosystem II., 1987,, 573-576.		4
96	Synthesis of Chlorophyll-Binding Polypeptides during Greening of Etiolated Barley., 1987,, 577-580.		2
97	Reconstitution of light-harvesting complexes and photosystem II cores into galactolipid and phospholipid liposomes Journal of Cell Biology, 1985, 100, 552-557.	5.2	42
98	Fluorescence decay kinetics of mutants of corn deficient in photosystem I and photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 767, 574-581.	1.0	22
99	Evidence that CP 47 (CPa-1) is the Reaction Centre of Photosystem II. , 1984, , 95-98.		7
100	Isolation of PS II reaction centre and its relationship to the minor chlorophyll-protein complexes. Journal of Cellular Biochemistry, 1983, 23, 171-179.	2.6	40
101	Relationship between the two minor chlorophyll a-protein complexes and the Photosystem II reaction centre. Biochimica Et Biophysica Acta - Bioenergetics, 1983, 724, 291-293.	1.0	62
102	The chlorophyll-protein complexes of Acetabularia. A novel chlorophyll ab complex which forms oligomers. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 681, 248-255.	1.0	38
103	The nature of the light-harvesting complex as defined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 681, 256-262.	1.0	39
104	The effects of cations and trypsin on extraction of chlorophyll-protein complexes by octyl glucoside. Archives of Biochemistry and Biophysics, 1982, 214, 563-572.	3.0	26
105	Protein Synthesis by Isolated <i>Acetabularia </i> Chloroplasts. FEBS Journal, 1982, 128, 543-546.	0.2	13
106	Isolation and Properties of Chloroplast Coupling Factor from Wheat. FEBS Journal, 1981, 119, 145-150.	0.2	16
107	Hair morphogenesis inAcetabularia mediterranea: Temperature-dependent spacing and models of morphogen waves. Protoplasma, 1981, 106, 211-221.	2.1	44
108	Widespread Distribution of Some Minor Chlorophyll-Protein Complexes in Some Plants and Algae. Plant Physiology, 1981, 67, 1061-1063.	4.8	35

#	Article	lF	Citations
109	Fractionation of Thylakoid Membranes with the Nonionic Detergent Octyl- \hat{l}^2 -d-glucopyranoside. Plant Physiology, 1980, 66, 428-432.	4.8	183
110	Protein synthesis by isolated Acetabularia chloroplasts. In vitro synthesis of the apoprotein of the P-700-chlorophyll a-protein complex (CP I). Nucleic Acids and Protein Synthesis, 1980, 609, 107-120.	1.7	29
111	The kinetic complexity of Acetabularia chloroplast DNA. Nucleic Acids and Protein Synthesis, 1978, 521, 67-73.	1.7	50
112	The effects of natural and synthetic sea water media on the growth and reproduction of Acetabularia. Phycologia, 1977, 16, 87-94.	1.4	10
113	Fractionation of Saprolegnia diclina (oomycetes) satellite DNAs by AgNO3/Cs2SO4 density gradient centrifugation. Nucleic Acids and Protein Synthesis, 1977, 479, 411-415.	1.7	2
114	Covalently closed minicircular DNA associated with Acetabularia chloroplasts. Nucleic Acids and Protein Synthesis, 1976, 447, 156-166.	1.7	41
115	Abnormal cells resulting from asexual reproduction in Acetabularia (Chlorophyceae, Siphonales). Phycologia, 1976, 15, 161-164.	1.4	5
116	Nuclear and Satellite DNA Base Composition and the Taxonomy of Saprolegnia (Oomycetes). Journal of General Microbiology, 1976, 96, 215-219.	2.3	7
117	Evidence for the occurrence of meiosis before cyst formation in Acetabularia mediterranea (Chlorophyceae, Siphonales). Phycologia, 1973, 12, 233-235.	1.4	20
118	Women Job Applicants. Science, 1973, 181, 496-496.	12.6	0
119	Isolation and base composition of DNAs of primitive land plants II. Mosses. Nucleic Acids and Protein Synthesis, 1972, 277, 29-34.	1.7	6
120	DNA base composition and the taxonomy of the Oomycetes. Canadian Journal of Microbiology, 1972, 18, 963-968.	1.7	23
121	Isolation and base composition of DNA's of primitive land plants I. Ferns and fern-allies. Nucleic Acids and Protein Synthesis, 1971, 254, 402-406.	1.7	6
122	Acetabularia Chloroplast DNA: Electron Microscopic Visualization. Science, 1970, 168, 981-982.	12.6	28
123	Functional analysis of early defective mutants of coliphage λ. Virology, 1970, 40, 792-799.	2.4	12
124	Replication of Chloroplast DNA of Tobacco. Science, 1966, 152, 1071-1074.	12.6	29
125	Spectra of arylarsines—II. Journal of Inorganic and Nuclear Chemistry, 1965, 27, 641-651.	0.5	11