Roald M Tiggelaar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4321168/publications.pdf

Version: 2024-02-01

59 papers 1,595 citations

304743 22 h-index 315739 38 g-index

61 all docs

61 docs citations

61 times ranked

2504 citing authors

#	Article	IF	CITATIONS
1	Massively parallel sequencing techniques for forensics: A review. Electrophoresis, 2018, 39, 2642-2654.	2.4	126
2	Spatial decoupling of light absorption and catalytic activity of Ni–Mo-loaded high-aspect-ratio silicon microwire photocathodes. Nature Energy, 2018, 3, 185-192.	39.5	118
3	Fabrication, mechanical testing and application of high-pressure glass microreactor chips. Chemical Engineering Journal, 2007, 131, 163-170.	12.7	117
4	Microfluidic Devices for Forensic DNA Analysis: A Review. Biosensors, 2016, 6, 41.	4.7	107
5	A Brushâ€Gel/Metalâ€Nanoparticle Hybrid Film as an Efficient Supported Catalyst in Glass Microreactors. Chemistry - A European Journal, 2010, 16, 12406-12411.	3.3	77
6	The Extraction and Recovery Efficiency of Pure <scp>DNA</scp> for Different Types of Swabs. Journal of Forensic Sciences, 2018, 63, 1492-1499.	1.6	74
7	Room-temperature intermediate layer bonding for microfluidic devices. Lab on A Chip, 2009, 9, 3481.	6.0	65
8	Fabrication and Doping Methods for Silicon Nano―and Micropillar Arrays for Solarâ€Cell Applications: A Review. Advanced Materials, 2015, 27, 6781-6796.	21.0	60
9	Substantial rate enhancements of the esterification reaction of phthalic anhydride with methanol at high pressure and using supercritical CO2 as a co-solvent in a glass microreactor. Lab on A Chip, 2007, 7, 1345.	6.0	55
10	A light detection cell to be used in a micro analysis system for ammonia. Talanta, 2002, 56, 331-339.	5. 5	41
11	Fabrication and characterization of high-temperature microreactors with thin film heater and sensor patterns in silicon nitride tubes. Lab on A Chip, 2005, 5, 326.	6.0	40
12	Bacterial viability on chemically modified silicon nanowire arrays. Journal of Materials Chemistry B, 2016, 4, 3104-3112.	5.8	37
13	Continuous Flow ¹ H and ¹³ C NMR Spectroscopy in Microfluidic Stripline NMR Chips. Analytical Chemistry, 2017, 89, 2296-2303.	6.5	34
14	Efficient and Stable Silicon Microwire Photocathodes with a Nickel Silicide Interlayer for Operation in Strongly Alkaline Solutions. ACS Energy Letters, 2018, 3, 1086-1092.	17.4	33
15	Gas–liquid dynamics at low Reynolds numbers in pillared rectangular micro channels. Microfluidics and Nanofluidics, 2010, 9, 131-144.	2.2	32
16	Characterization of porous silicon integrated in liquid chromatography chips. Lab on A Chip, 2009, 9, 456-463.	6.0	30
17	Column coupling isotachophoresis–capillary electrophoresis with mass spectrometric detection: Characterization and optimization of microfluidic interfaces. Journal of Chromatography A, 2013, 1297, 204-212.	3.7	28
18	Glucose level determination with a multi-enzymatic cascade reaction in a functionalized glass chip. Analyst, The, 2013, 138, 5019.	3.5	28

#	Article	IF	Citations
19	Cyclic Olefin Copolymer Microfluidic Devices for Forensic Applications. Biosensors, 2019, 9, 85.	4.7	28
20	Large-scale fabrication of highly ordered sub-20 nm noble metal nanoparticles on silica substrates without metallic adhesion layers. Microsystems and Nanoengineering, 2018, 4, 4.	7.0	24
21	Analysis systems for the detection of ammonia based on micromachined components modular hybrid versus monolithic integrated approach. Sensors and Actuators B: Chemical, 2003, 92, 25-36.	7.8	23
22	Controlled Doping Methods for Radial p/n Junctions in Silicon. Advanced Energy Materials, 2015, 5, 1401745.	19.5	23
23	Shrinkage Control of Photoresist for Largeâ€Area Fabrication of Subâ€30 nm Periodic Nanocolumns. Advanced Materials Technologies, 2017, 2, 1600238.	5.8	23
24	High-throughput activity screening and sorting of single catalyst particles with a droplet microreactor using dielectrophoresis. Nature Catalysis, 2021, 4, 1070-1079.	34.4	23
25	Effects of Pillar Height and Junction Depth on the Performance of Radially Doped Silicon Pillar Arrays for Solar Energy Applications. Advanced Energy Materials, 2016, 6, 1501728.	19.5	20
26	Flow of CO2–ethanol and of CO2–methanol in a non-adiabatic microfluidic T-junction at high pressures. Microfluidics and Nanofluidics, 2012, 12, 927-940.	2.2	17
27	3D Fractals as SERS Active Platforms: Preparation and Evaluation for Gas Phase Detection of G-Nerve Agents. Micromachines, 2018, 9, 60.	2.9	17
28	A Standâ€Alone Siâ€Based Porous Photoelectrochemical Cell. Advanced Energy Materials, 2019, 9, 1803548.	19.5	17
29	Spreading of thin-film metal patterns deposited on nonplanar surfaces using a shadow mask micromachined in Si (110). Journal of Vacuum Science & Technology B, 2007, 25, 1207.	1.3	16
30	Electrical properties of low pressure chemical vapor deposited silicon nitride thin films for temperatures up to 650 °C. Journal of Applied Physics, 2009, 105, .	2.5	16
31	Postdeposition UV-Ozone Treatment: An Enabling Technique to Enhance the Direct Adhesion of Gold Thin Films to Oxidized Silicon. ACS Nano, 2019, 13, 6782-6789.	14.6	16
32	Morphology of single picosecond pulse subsurface laser-induced modifications of sapphire and subsequent selective etching. Optics Express, 2018, 26, 29283.	3.4	16
33	Fluorescent cyanine dyes for the quantification of low amounts ofÂdsDNA. Analytical Biochemistry, 2016, 511, 74-79.	2.4	15
34	Spatially resolved spectroscopy using tapered stripline NMR. Journal of Magnetic Resonance, 2016, 263, 136-146.	2.1	15
35	Spatioselective Electrochemical and Photoelectrochemical Functionalization of Silicon Microwires with Axial p/n Junctions. Advanced Materials, 2016, 28, 1400-1405.	21.0	14
36	Unraveling the growth of vertically aligned multi-walled carbon nanotubes by chemical vapor deposition. Materials Research Express, 2014, 1, 045604.	1.6	13

#	Article	IF	CITATIONS
37	An All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay. Biosensors, 2017, 7, 58.	4.7	11
38	3D-fabrication of tunable and high-density arrays of crystalline silicon nanostructures. Journal of Micromechanics and Microengineering, 2018, 28, 044003.	2.6	11
39	A Microfluidic Approach for Biosensing DNA within Forensics. Applied Sciences (Switzerland), 2020, 10, 7067.	2.5	10
40	Temperature Dependence of the 1727 cm ^{â€"1} Interstitial Oxygen Absorption Band Studied by Attenuated Total Internal Reflection Infrared Spectroscopy in a Newly Developed Microreactor. Journal of Physical Chemistry C, 2013, 117, 21936-21942.	3.1	9
41	Inâ€line sample concentration by evaporation through porous hollow fibers and micromachined membranes embedded in microfluidic devices. Electrophoresis, 2016, 37, 463-471.	2.4	9
42	Fabrication of integrated porous glass for microfluidic applications. Lab on A Chip, 2013, 13, 3061.	6.0	8
43	CO Adsorption on Pt Nanoparticles in Low E-Fields Studied by ATR-IR Spectroscopy in a Microreactor. Journal of Physical Chemistry C, 2015, 119, 24887-24894.	3.1	8
44	Photoâ€Electrical Characterization of Silicon Micropillar Arrays with Radial p/n Junctions Containing Passivation and Antiâ€Reflection Coatings. Advanced Energy Materials, 2017, 7, 1601497.	19.5	8
45	Bacterial Footprints in Elastic Pillared Microstructures. ACS Applied Bio Materials, 2018, 1, 1294-1300.	4.6	8
46	FDA authorized molecular point-of-care SARS-CoV-2 tests: A critical review on principles, systems and clinical performances. Biosensors and Bioelectronics: X, 2022, 11, 100158.	1.7	8
47	Displacement Talbot lithography nanopatterned microsieve array for directional neuronal network formation in brain-on-chip. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	1.2	7
48	Fabrication and characterization of microsieve electrode array (<i>$\hat{A}\mu$</i> SEA) enabling cell positioning on 3D electrodes. Journal of Micromechanics and Microengineering, 2017, 27, 015017.	2.6	7
49	Three-Dimensional Fractal Geometry for Gas Permeation in Microchannels. Micromachines, 2018, 9, 45.	2.9	6
50	Dataset of the absorption, emission and excitation spectra and fluorescence intensity graphs of fluorescent cyanine dyes for the quantification of low amounts of dsDNA. Data in Brief, 2017, 10, 132-143.	1.0	5
51	Single catalyst particle diagnostics in a microreactor for performing multiphase hydrogenation reactions. Faraday Discussions, 2021, 229, 267-280.	3.2	5
52	On the Improvement of Alveolarâ€Like Microfluidic Devices for Efficient Blood Oxygenation. Advanced Materials Technologies, 2021, 6, 2001027.	5.8	5
53	Wafer-scale fabrication and modification of silicon nano-pillar arrays for nanoelectronics, nanofluidics and beyond. International Journal of Nanotechnology, 2020, 17, 583.	0.2	4
54	Effect of Local Topography on Cell Division of Staphylococcus spp Nanomaterials, 2022, 12, 683.	4.1	4

#	Article	IF	CITATIONS
55	Local deposition and patterning of catalytic thin films in microsystems. Journal of Micromechanics and Microengineering, 2012, 22, 045023.	2.6	3
56	Synthesis and Characterization of Boron Thin Films Using Chemical and Physical Vapor Depositions. Coatings, 2022, 12, 685.	2.6	3
57	A factorial design approach to fracture pressure tests of microfluidic BF33 and D263T glass chips with side-port capillary connections. Journal of Micromechanics and Microengineering, 2019, 29, 035011.	2.6	1
58	A Self-Aligned Wafer-Scale Gate-All-Around Aperture Definition Method for Silicon Nanostructures. , 2022, , .		1
59	Portable Optoelectronic System for Monitoring Enzymatic Chemiluminescent Reaction. Lecture Notes in Electrical Engineering, 2019, , 189-194.	0.4	0