Matthias Nahrendorf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4321029/publications.pdf

Version: 2024-02-01

248 papers

36,103 citations

98 h-index 183 g-index

255 all docs

255 docs citations

255 times ranked 37323 citing authors

#	Article	IF	CITATIONS
1	The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. Journal of Experimental Medicine, 2007, 204, 3037-3047.	8.5	1,926
2	Identification of Splenic Reservoir Monocytes and Their Deployment to Inflammatory Sites. Science, 2009, 325, 612-616.	12.6	1,806
3	Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nature Nanotechnology, 2012, 7, 389-393.	31.5	1,015
4	Myocardial infarction accelerates atherosclerosis. Nature, 2012, 487, 325-329.	27.8	874
5	Leukocyte Behavior in Atherosclerosis, Myocardial Infarction, and Heart Failure. Science, 2013, 339, 161-166.	12.6	856
6	Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nature Medicine, 2013, 19, 1166-1172.	30.7	855
7	Macrophages Facilitate Electrical Conduction in the Heart. Cell, 2017, 169, 510-522.e20.	28.9	703
8	Imaging macrophages with nanoparticles. Nature Materials, 2014, 13, 125-138.	27.5	698
9	Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology, 2011, 29, 1005-1010.	17.5	697
10	Monocytes: Protagonists of Infarct Inflammation and Repair After Myocardial Infarction. Circulation, 2010, 121, 2437-2445.	1.6	645
11	Noninvasive Vascular Cell Adhesion Molecule-1 Imaging Identifies Inflammatory Activation of Cells in Atherosclerosis. Circulation, 2006, 114, 1504-1511.	1.6	579
12	Chronic variable stress activates hematopoietic stem cells. Nature Medicine, 2014, 20, 754-758.	30.7	565
13	Origins of tumor-associated macrophages and neutrophils. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2491-2496.	7.1	547
14	Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nature Biotechnology, 2013, 31, 898-907.	17.5	528
15	Nanoparticle PET-CT Imaging of Macrophages in Inflammatory Atherosclerosis. Circulation, 2008, 117, 379-387.	1.6	524
16	Cardioimmunology: the immune system in cardiac homeostasis and disease. Nature Reviews Immunology, 2018, 18, 733-744.	22.7	482
17	In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nature Nanotechnology, 2014, 9, 648-655.	31.5	466
18	Differential Contribution of Monocytes to Heart Macrophages in Steady-State and After Myocardial Infarction. Circulation Research, 2014, 115, 284-295.	4.5	453

#	Article	IF	Citations
19	Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet, The, 2017, 389, 834-845.	13.7	442
20	The human heart contains distinct macrophage subsets with divergent origins and functions. Nature Medicine, 2018, 24, 1234-1245.	30.7	439
21	Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. Journal of Experimental Medicine, 2012, 209, 123-137.	8.5	435
22	Ly-6C ^{high} Monocytes Depend on Nr4a1 to Balance Both Inflammatory and Reparative Phases in the Infarcted Myocardium. Circulation Research, 2014, 114, 1611-1622.	4.5	427
23	Extramedullary Hematopoiesis Generates Ly-6C ^{high} Monocytes That Infiltrate Atherosclerotic Lesions. Circulation, 2012, 125, 364-374.	1.6	398
24	An acute immune response underlies the benefit of cardiac stemÂcell therapy. Nature, 2020, 577, 405-409.	27.8	392
25	Multimodality Molecular Imaging Identifies Proteolytic and Osteogenic Activities in Early Aortic Valve Disease. Circulation, 2007, 115, 377-386.	1.6	375
26	IRF3 and type I interferons fuel a fatal response to myocardial infarction. Nature Medicine, 2017, 23, 1481-1487.	30.7	358
27	Innate Response Activator B Cells Protect Against Microbial Sepsis. Science, 2012, 335, 597-601.	12.6	351
28	Abandoning M1/M2 for a Network Model of Macrophage Function. Circulation Research, 2016, 119, 414-417.	4.5	339
29	A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nature Communications, 2014, 5, 3065.	12.8	336
30	On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nature Medicine, 2016, 22, 945-951.	30.7	333
31	Proliferation and Recruitment Contribute to Myocardial Macrophage Expansion in Chronic Heart Failure. Circulation Research, 2016, 119, 853-864.	4.5	318
32	Cardiac macrophages promote diastolic dysfunction. Journal of Experimental Medicine, 2018, 215, 423-440.	8.5	314
33	Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nature Neuroscience, 2018, 21, 1209-1217.	14.8	302
34	PET/MRI of Inflammation in Myocardial Infarction. Journal of the American College of Cardiology, 2012, 59, 153-163.	2.8	301
35	Impaired Infarct Healing in Atherosclerotic Mice With Ly-6ChiMonocytosis. Journal of the American College of Cardiology, 2010, 55, 1629-1638.	2.8	281
36	Monocyte and Macrophage Heterogeneity in the Heart. Circulation Research, 2013, 112, 1624-1633.	4.5	279

#	Article	IF	CITATIONS
37	Sleep modulates haematopoiesis and protects against atherosclerosis. Nature, 2019, 566, 383-387.	27.8	279
38	Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF ^{high} neutrophils. Science, 2017, 358, .	12.6	270
39	Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science, 2015, 347, 1260-1265.	12.6	265
40	Leukocytes Link Local and SystemicÂlnflammation in IschemicÂCardiovascularÂDisease. Journal of the American College of Cardiology, 2016, 67, 1091-1103.	2.8	257
41	Cardiac macrophages and their role in ischaemic heart disease. Cardiovascular Research, 2014, 102, 240-248.	3.8	256
42	Monocyte-Directed RNAi Targeting CCR2 Improves Infarct Healing in Atherosclerosis-Prone Mice. Circulation, 2013, 127, 2038-2046.	1.6	243
43	Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magnetic Resonance in Medicine, 2005, 54, 718-724.	3.0	238
44	¹⁸ F Labeled Nanoparticles for <i>in Vivo</i> PET-CT Imaging. Bioconjugate Chemistry, 2009, 20, 397-401.	3.6	229
45	InÂVivo Silencing of the Transcription Factor IRF5 Reprograms the Macrophage Phenotype and Improves Infarct Healing. Journal of the American College of Cardiology, 2014, 63, 1556-1566.	2.8	220
46	Myeloid cell contributions to cardiovascular health and disease. Nature Medicine, 2018, 24, 711-720.	30.7	211
47	Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. European Heart Journal, 2014, 35, 376-385.	2.2	210
48	Monocyte and macrophage contributions to cardiac remodeling. Journal of Molecular and Cellular Cardiology, 2016, 93, 149-155.	1.9	210
49	Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Research in Cardiology, 2008, 103, 122-130.	5.9	208
50	Hybrid PET-optical imaging using targeted probes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7910-7915.	7.1	208
51	Targeting Interleukin- $\hat{\Pi}^2$ Reduces Leukocyte Production After Acute Myocardial Infarction. Circulation, 2015, 132, 1880-1890.	1.6	200
52	Angiotensin-Converting Enzyme Inhibition Prevents the Release of Monocytes From Their Splenic Reservoir in Mice With Myocardial Infarction. Circulation Research, 2010, 107, 1364-1373.	4.5	198
53	Splenic Metabolic Activity Predicts Risk ofÂFuture Cardiovascular Events. JACC: Cardiovascular Imaging, 2015, 8, 121-130.	5. 3	198
54	18F-4V for PET–CT Imaging of VCAM-1 Expression in Atherosclerosis. JACC: Cardiovascular Imaging, 2009, 2, 1213-1222.	5. 3	197

#	Article	IF	CITATIONS
55	Fluorescence Tomography and Magnetic Resonance Imaging of Myocardial Macrophage Infiltration in Infarcted Myocardium In Vivo. Circulation, 2007, 115, 1384-1391.	1.6	185
56	Ischemic Stroke Activates Hematopoietic Bone Marrow Stem Cells. Circulation Research, 2015, 116, 407-417.	4.5	182
57	Resident and Monocyte-Derived Macrophages in Cardiovascular Disease. Circulation Research, 2018, 122, 113-127.	4.5	181
58	Activatable Magnetic Resonance Imaging Agent Reports Myeloperoxidase Activity in Healing Infarcts and Noninvasively Detects the Antiinflammatory Effects of Atorvastatin on Ischemia-Reperfusion Injury. Circulation, 2008, 117, 1153-1160.	1.6	178
59	Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation. Science Advances, 2015, 1, .	10.3	173
60	RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Science Translational Medicine, 2016, 8, 342ra80.	12.4	169
61	Myocardial Infarction Activates CCR2+ Hematopoietic Stem and Progenitor Cells. Cell Stem Cell, 2015, 16, 477-487.	11.1	168
62	Monocytes in Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1066-1070.	2.4	167
63	Oxazine Conjugated Nanoparticle Detects in Vivo Hypochlorous Acid and Peroxynitrite Generation. Journal of the American Chemical Society, 2009, 131, 15739-15744.	13.7	165
64	Hybrid In Vivo FMT-CT Imaging of Protease Activity in Atherosclerosis With Customized Nanosensors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1444-1451.	2.4	161
65	Endoscopic Time-Lapse Imaging of Immune Cells in Infarcted Mouse Hearts. Circulation Research, 2013, 112, 891-899.	4.5	161
66	The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes. Journal of Experimental Medicine, 2017, 214, 3293-3310.	8.5	161
67	Inhibiting Inflammation with Myeloid Cell-Specific Nanobiologics Promotes Organ Transplant Acceptance. Immunity, 2018, 49, 819-828.e6.	14.3	161
68	Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. FASEB Journal, 2013, 27, 871-881.	0.5	160
69	Angiotensin II Drives the Production of Tumor-Promoting Macrophages. Immunity, 2013, 38, 296-308.	14.3	157
70	Imaging and Nanomedicine in Inflammatory Atherosclerosis. Science Translational Medicine, 2014, 6, 239sr1.	12.4	157
71	Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells. Nature Medicine, 2019, 25, 1761-1771.	30.7	157
72	Astrocytic interleukin-3 programs microglia and limits Alzheimer's disease. Nature, 2021, 595, 701-706.	27.8	157

#	Article	IF	CITATIONS
73	Dual Channel Optical Tomographic Imaging of Leukocyte Recruitment and Protease Activity in the Healing Myocardial Infarct. Circulation Research, 2007, 100, 1218-1225.	4.5	151
74	Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell, 2021, 184, 1348-1361.e22.	28.9	149
75	IGF2BP2/IMP2-Deficient Mice Resist Obesity through Enhanced Translation of Ucp1 mRNA and Other mRNAs Encoding Mitochondrial Proteins. Cell Metabolism, 2015, 21, 609-621.	16.2	148
76	Factor XIII Deficiency Causes Cardiac Rupture, Impairs Wound Healing, and Aggravates Cardiac Remodeling in Mice With Myocardial Infarction. Circulation, 2006, 113, 1196-1202.	1.6	145
77	In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nature Medicine, 2011, 17, 1142-1146.	30.7	144
78	Polymeric Nanoparticle PET/MR Imaging Allows Macrophage Detection in Atherosclerotic Plaques. Circulation Research, 2013, 112, 755-761.	4.5	144
79	Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. Journal of Experimental Medicine, 2015, 212, 497-512.	8.5	143
80	Flow Perturbation Mediates Neutrophil Recruitment and Potentiates Endothelial Injury via TLR2 in Mice. Circulation Research, 2017, 121, 31-42.	4.5	141
81	Molecular Magnetic Resonance Imaging in Cardiovascular Medicine. Circulation, 2007, 115, 2076-2086.	1.6	135
82	Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis. Journal of Experimental Medicine, 2014, 211, 1243-1256.	8.5	132
83	Multimodality Cardiovascular Molecular Imaging, Part II. Circulation: Cardiovascular Imaging, 2009, 2, 56-70.	2.6	130
84	Detection of Macrophages in Aortic Aneurysms by Nanoparticle Positron Emission Tomography–Computed Tomography. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 750-757.	2.4	130
85	Advancing biomedical imaging. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14424-14428.	7.1	130
86	Real-time in vivo imaging of the beating mouse heart at microscopic resolution. Nature Communications, 2012, 3, 1054.	12.8	126
87	Cellular Imaging of Inflammation in Atherosclerosis Using Magnetofluorescent Nanomaterials. Molecular Imaging, 2006, 5, 7290.2006.00009.	1.4	124
88	Ibrutinib-Mediated Atrial Fibrillation Attributable to Inhibition of C-Terminal Src Kinase. Circulation, 2020, 142, 2443-2455.	1.6	121
89	Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nature Communications, 2017, 8, 14064.	12.8	118
90	Multimodality Cardiovascular Molecular Imaging, Part I. Circulation: Cardiovascular Imaging, 2008, 1, 244-256.	2.6	117

#	Article	IF	Citations
91	Quantitative Imaging of Tumor-Associated Macrophages and Their Response to Therapy Using ⁶⁴ Cu-Labeled Macrin. ACS Nano, 2018, 12, 12015-12029.	14.6	117
92	Pro-Angiogenic Macrophage Phenotype to Promote Myocardial Repair. Journal of the American College of Cardiology, 2019, 73, 2990-3002.	2.8	117
93	⁸⁹ Zr-Labeled Dextran Nanoparticles Allow in Vivo Macrophage Imaging. Bioconjugate Chemistry, 2011, 22, 2383-2389.	3.6	116
94	Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature, 2022, 608, 174-180.	27.8	115
95	Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells. Molecular Therapy - Nucleic Acids, 2012, 1, e4.	5.1	112
96	Tissue-Specific Macrophage Responses to Remote Injury Impact the Outcome of Subsequent Local Immune Challenge. Immunity, 2019, 51, 899-914.e7.	14.3	110
97	Stress-Associated Neurobiological Pathway Linking Socioeconomic Disparities to Cardiovascular Disease. Journal of the American College of Cardiology, 2019, 73, 3243-3255.	2.8	109
98	Prospective Evaluation of ¹⁸ F-Fluorodeoxyglucose Uptake in Postischemic Myocardium by Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging as a Prognostic Marker of Functional Outcome. Circulation: Cardiovascular Imaging, 2016, 9, e004316.	2.6	107
99	Behavior of Endogenous Tumor-Associated Macrophages Assessed In Vivo Using a Functionalized Nanoparticle. Neoplasia, 2009, 11, 459-IN4.	5.3	103
100	Stage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosis. European Heart Journal, 2019, 40, 2482-2491.	2.2	102
101	Direct Imaging of Cerebral Thromboemboli Using Computed Tomography and Fibrin-targeted Gold Nanoparticles. Theranostics, 2015, 5, 1098-1114.	10.0	101
102	Silencing of CCR2 in myocarditis. European Heart Journal, 2015, 36, 1478-1488.	2.2	101
103	Molecular Imaging of Coronary Atherosclerosis and Myocardial Infarction. Circulation Research, 2011, 108, 593-606.	4.5	98
104	Stress-Induced Changes in Bone Marrow Stromal Cell Populations Revealed through Single-Cell Protein Expression Mapping. Cell Stem Cell, 2019, 25, 570-583.e7.	11.1	96
105	Hematopoiesis and Cardiovascular Disease. Circulation Research, 2020, 126, 1061-1085.	4.5	96
106	Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6731-E6740.	7.1	95
107	Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nature Biomedical Engineering, 2018, 2, 279-292.	22.5	94
108	Molecular MRI of Cardiomyocyte Apoptosis With Simultaneous Delayed-Enhancement MRI Distinguishes Apoptotic and Necrotic Myocytes In Vivo. Circulation: Cardiovascular Imaging, 2009, 2, 460-467.	2.6	92

#	Article	IF	Citations
109	Myeloperoxidase-rich Ly-6C+ myeloid cells infiltrate allografts and contribute to an imaging signature of organ rejection in mice. Journal of Clinical Investigation, 2010, 120, 2627-2634.	8.2	90
110	Lifestyle Effects on Hematopoiesis and Atherosclerosis. Circulation Research, 2015, 116, 884-894.	4.5	89
111	Neutrophil-macrophage communication in inflammation and atherosclerosis. Science, 2015, 349, 237-238.	12.6	87
112	Monocytes and macrophages as nanomedicinal targets for improved diagnosis and treatment of disease. Expert Review of Molecular Diagnostics, 2013, 13, 567-580.	3.1	86
113	Imaging of the unstable plaque: how far have we got?. European Heart Journal, 2009, 30, 2566-2574.	2.2	84
114	Molecular Imaging of Innate Immune Cell Function in Transplant Rejection. Circulation, 2009, 119, 1925-1932.	1.6	81
115	Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche. Nature Biomedical Engineering, 2020, 4, 1076-1089.	22,5	80
116	Macrophages and Cardiovascular Health. Physiological Reviews, 2018, 98, 2523-2569.	28.8	79
117	Myeloperoxidase Inhibition Improves Ventricular Function and Remodeling AfterÂExperimental Myocardial Infarction. JACC Basic To Translational Science, 2016, 1, 633-643.	4.1	77
118	Increased Microvascularization and Vessel Permeability Associate With Active Inflammation in Human Atheromata. Circulation: Cardiovascular Imaging, 2014, 7, 920-929.	2.6	74
119	Corticosterone inhibits GAS6 to govern hair follicle stem-cell quiescence. Nature, 2021, 592, 428-432.	27.8	73
120	Imaging Macrophage and Hematopoietic Progenitor Proliferation in Atherosclerosis. Circulation Research, 2015, 117, 835-845.	4.5	72
121	Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis. Nature Neuroscience, 2022, 25, 567-576.	14.8	72
122	Serial cine-magnetic resonance imaging of left ventricular remodeling after myocardial infarction in rats. Journal of Magnetic Resonance Imaging, 2001, 14, 547-555.	3.4	71
123	Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Molecular Imaging, 2006, 5, 85-92.	1.4	70
124	Transglutaminase activity in acute infarcts predicts healing outcome and left ventricular remodelling: implications for FXIII therapy and antithrombin use in myocardial infarction. European Heart Journal, 2008, 29, 445-454.	2.2	69
125	Innate immune cells in ischaemic heart disease: does myocardial infarction beget myocardial infarction?. European Heart Journal, 2016, 37, 868-872.	2.2	67
126	Modifiable Cardiovascular Risk, Hematopoiesis, and Innate Immunity. Circulation Research, 2020, 126, 1242-1259.	4.5	67

#	Article	IF	CITATIONS
127	Healing and adverse remodelling after acute myocardial infarction: role of the cellular immune response. Heart, 2012, 98, 1384-1390.	2.9	66
128	The journey from stem cell to macrophage. Annals of the New York Academy of Sciences, 2014, 1319, 1-18.	3.8	64
129	Imaging Systemic Inflammatory Networks in Ischemic Heart Disease. Journal of the American College of Cardiology, 2015, 65, 1583-1591.	2.8	64
130	Development and Function of Arterial and Cardiac Macrophages. Trends in Immunology, 2016, 37, 32-40.	6.8	64
131	Increased haematopoietic activity in patients with atherosclerosis. European Heart Journal, 2016, 38, ehw246.	2.2	62
132	Extraâ€Axial Inflammatory Signal in Parameninges in Migraine with Visual Aura. Annals of Neurology, 2020, 87, 939-949.	5. 3	60
133	High-resolution imaging of murine myocardial infarction with delayed-enhancement cine micro-CT. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H3172-H3178.	3.2	59
134	Acute mental stress drives vascular inflammation and promotes plaque destabilization in mouse atherosclerosis. European Heart Journal, 2021, 42, 4077-4088.	2.2	58
135	The cardiac microenvironment uses nonâ€canonical <scp>WNT</scp> signaling to activate monocytes after myocardial infarction. EMBO Molecular Medicine, 2017, 9, 1279-1293.	6.9	55
136	The Innate Immune System After Ischemic Injury. JAMA Neurology, 2014, 71, 233.	9.0	54
137	Chronic stress primes innate immune responses in mice and humans. Cell Reports, 2021, 36, 109595.	6.4	53
138	Regulation and consequences of monocytosis. Immunological Reviews, 2014, 262, 167-178.	6.0	51
139	Imaging-assisted nanoimmunotherapy for atherosclerosis in multiple species. Science Translational Medicine, 2019, $11,\ldots$	12.4	51
140	Molecular MRI Detects Low Levels of Cardiomyocyte Apoptosis in a Transgenic Model of Chronic Heart Failure. Circulation: Cardiovascular Imaging, 2009, 2, 468-475.	2.6	50
141	Cardiovascular Molecular Imaging: The Road Ahead. Journal of Nuclear Medicine, 2012, 53, 673-676.	5.0	50
142	Glucocorticoids Regulate Bone Marrow B Lymphopoiesis After Stroke. Circulation Research, 2019, 124, 1372-1385.	4.5	50
143	Monocyte Subset Dynamics in Human Atherosclerosis Can Be Profiled with Magnetic Nano-Sensors. PLoS ONE, 2009, 4, e5663.	2.5	50
144	Heart Failure With Preserved Ejection Fraction Induces Beiging in Adipose Tissue. Circulation: Heart Failure, 2016, 9, e002724.	3.9	49

#	Article	IF	CITATIONS
145	Report of the National Heart, Lung, and Blood Institute Working Group on the Translation of Cardiovascular Molecular Imaging. Circulation, 2011, 123, 2157-2163.	1.6	47
146	Assessment of Cardiovascular Apoptosis in the Isolated Rat Heart by Magnetic Resonance Molecular Imaging. Molecular Imaging, 2006, 5, 7290.2006.00012.	1.4	46
147	Applying nanomedicine in maladaptive inflammation and angiogenesis. Advanced Drug Delivery Reviews, 2017, 119, 143-158.	13.7	46
148	Late Na+ current and protracted electrical recovery are critical determinants of the aging myopathy. Nature Communications, 2015, 6, 8803.	12.8	45
149	Imaging the Vascular Bone Marrow Niche During Inflammatory Stress. Circulation Research, 2018, 123, 415-427.	4.5	45
150	Monocyte and haematopoietic progenitor reprogramming as common mechanism underlying chronic inflammatory and cardiovascular diseases. European Heart Journal, 2018, 39, 3521-3527.	2.2	44
151	CCR2 expression on circulating monocytes is associated with arterial wall inflammation assessed by 18F-FDG PET/CT in patients at risk for cardiovascular disease. Cardiovascular Research, 2018, 114, 468-475.	3.8	43
152	Nanoimmunotherapy to treat ischaemic heart disease. Nature Reviews Cardiology, 2019, 16, 21-32.	13.7	43
153	Bone Marrow Endothelial Cells Regulate Myelopoiesis in Diabetes Mellitus. Circulation, 2020, 142, 244-258.	1.6	42
154	Probing myeloid cell dynamics in ischaemic heart disease by nanotracer hot-spot imaging. Nature Nanotechnology, 2020, 15, 398-405.	31.5	42
155	Prosaposin mediates inflammation in atherosclerosis. Science Translational Medicine, 2021, 13, .	12.4	42
156	Direct Thrombus Imaging in Stroke. Journal of Stroke, 2016, 18, 286-296.	3.2	39
157	Electroimmunology and cardiac arrhythmia. Nature Reviews Cardiology, 2021, 18, 547-564.	13.7	39
158	Nanoparticle PET-CT Detects Rejection and Immunomodulation in Cardiac Allografts. Circulation: Cardiovascular Imaging, 2013, 6, 568-573.	2.6	35
159	Neutrophil–macrophage cross-talk in acute myocardial infarction. European Heart Journal, 2017, 38, ehw085.	2.2	35
160	Self-reactive CD4+ IL-3+ T cells amplify autoimmune inflammation in myocarditis by inciting monocyte chemotaxis. Journal of Experimental Medicine, 2019, 216, 369-383.	8.5	34
161	Mechanisms of Myeloid Cell Modulation of Atherosclerosis. Microbiology Spectrum, 2016, 4, .	3.0	33
162	Immune cells in cardiac homeostasis and disease: emerging insights from novel technologies. European Heart Journal, 2022, 43, 1533-1541.	2.2	33

#	Article	IF	CITATIONS
163	B lymphocyte-derived acetylcholine limits steady-state and emergency hematopoiesis. Nature Immunology, 2022, 23, 605-618.	14.5	33
164	Neutrophils incite and macrophages avert electrical storm after myocardial infarction. , 2022, 1, 649-664.		33
165	Multimodal iron oxide nanoparticles for hybrid biomedical imaging. NMR in Biomedicine, 2013, 26, 756-765.	2.8	32
166	Imaging Cardiovascular and Lung Macrophages With the Positron Emission Tomography Sensor ⁶⁴ Cu-Macrin in Mice, Rabbits, and Pigs. Circulation: Cardiovascular Imaging, 2020, 13, e010586.	2.6	32
167	Bone marrow endothelial dysfunction promotes myeloid cell expansion in cardiovascular disease., 2022, 1, 28-44.		32
168	Selective Factor XIIa Inhibition Attenuates Silent Brain Ischemia. JACC: Cardiovascular Imaging, 2012, 5, 1127-1138.	5.3	31
169	Impact of cholesterol on proinflammatory monocyte production by the bone marrow. European Heart Journal, 2021, 42, 4309-4320.	2.2	31
170	Diminished Reactive Hematopoiesis and Cardiac Inflammation in a Mouse Model of Recurrent Myocardial Infarction. Journal of the American College of Cardiology, 2020, 75, 901-915.	2.8	28
171	MR-optical imaging of cardiovascular molecular targets. Basic Research in Cardiology, 2008, 103, 87-94.	5.9	26
172	Lack of Microsomal Prostaglandin E ₂ Synthase-1 in Bone Marrow–Derived Myeloid Cells Impairs Left Ventricular Function and Increases Mortality After Acute Myocardial Infarction. Circulation, 2012, 125, 2904-2913.	1.6	26
173	E-Selectin Inhibition Mitigates Splenic HSC Activation and Myelopoiesis in Hypercholesterolemic Mice With Myocardial Infarction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1802-1808.	2.4	26
174	Novel functions of macrophages in the heart: insights into electrical conduction, stress, and diastolic dysfunction. European Heart Journal, 2020, 41, 989-994.	2.2	26
175	Na+-H+ exchanger 1 determines atherosclerotic lesion acidification and promotes atherogenesis. Nature Communications, 2019, 10, 3978.	12.8	25
176	A Supramolecular Nanocarrier for Delivery of Amiodarone Anti-Arrhythmic Therapy to the Heart. Bioconjugate Chemistry, 2019, 30, 733-740.	3.6	24
177	Vasculitis: Molecular Imaging by Targeting the Inflammatory Enzyme Myeloperoxidase. Radiology, 2012, 262, 181-190.	7.3	23
178	Macrophage-Stem Cell Crosstalk After Myocardial Infarction. Journal of the American College of Cardiology, 2013, 62, 1902-1904.	2.8	23
179	Assessment of cardiovascular apoptosis in the isolated rat heart by magnetic resonance molecular imaging. Molecular Imaging, 2006, 5, 115-21.	1.4	22
180	Cholesterol, CCR2, and monocyte phenotypes in atherosclerosis. European Heart Journal, 2017, 38, 1594-1596.	2.2	21

#	Article	IF	CITATIONS
181	Unbiased discovery of in vivo imaging probes through in vitro profiling of nanoparticle libraries. Integrative Biology (United Kingdom), 2009, 1, 311.	1.3	20
182	Imaging macrophage development and fate in atherosclerosis and myocardial infarction. Immunology and Cell Biology, 2013, 91, 297-303.	2.3	20
183	Regulating Repair. Circulation Research, 2014, 115, 7-9.	4.5	20
184	Do Vascular Smooth Muscle Cells Differentiate to Macrophages in Atherosclerotic Lesions?. Circulation Research, 2014, 115, 605-606.	4.5	20
185	Liver X receptors are required for thymic resilience and T cell output. Journal of Experimental Medicine, 2020, 217, .	8.5	20
186	Cells and Iron Oxide Nanoparticles on the Move. Circulation: Cardiovascular Imaging, 2012, 5, 551-554.	2.6	19
187	Neutrophil contributions to ischaemic heart disease. European Heart Journal, 2017, 38, 465-472.	2.2	18
188	A Miniaturized, Programmable Pacemaker for Long-Term Studies in the Mouse. Circulation Research, 2018, 123, 1208-1219.	4.5	18
189	Does FXIII Deficiency Impair Wound Healing after Myocardial Infarction?. PLoS ONE, 2006, 1, e48.	2.5	16
190	Motion characterization scheme to minimize motion artifacts in intravital microscopy. Journal of Biomedical Optics, 2017, 22, 036005.	2.6	16
191	Myeloid cells in cardiovascular organs. Journal of Internal Medicine, 2019, 285, 491-502.	6.0	15
192	Bone Marrow Takes Center Stage in Cardiovascular Disease. Circulation Research, 2016, 119, 701-703.	4.5	14
193	Systems Biology and Noninvasive Imaging of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, e1-8.	2.4	12
194	Endocarditis and molecular imaging. Journal of Nuclear Cardiology, 2014, 21, 486-495.	2.1	11
195	Lp-PLA ₂ Antagonizes Left Ventricular Healing After Myocardial Infarction by Impairing the Appearance of Reparative Macrophages. Circulation: Heart Failure, 2015, 8, 980-987.	3.9	11
196	Looking back and thinking forwards — 15 years of cardiology and cardiovascular research. Nature Reviews Cardiology, 2019, 16, 651-660.	13.7	10
197	Infectious and lifestyle modifiers of immunity and host resilience. Immunity, 2021, 54, 1110-1122.	14.3	10
198	Relation of Preâ€Stroke Aspirin Use With Cerebral Infarct Volume and Functional Outcomes. Annals of Neurology, 2021, 90, 763-776.	5.3	9

#	Article	IF	CITATIONS
199	The maturation of a â€neural–hematopoietic' inflammatory axis in cardiovascular disease. Current Opinion in Lipidology, 2017, 28, 507-512.	2.7	8
200	The Myocardium. Journal of the American College of Cardiology, 2019, 74, 3136-3138.	2.8	8
201	Interferon- \hat{l}^3 regulates cardiac myeloid cells in myocardial infarction. Cardiovascular Research, 2019, 115, 1815-1816.	3.8	7
202	Uremic Toxins Activate Macrophages. Circulation, 2019, 139, 97-100.	1.6	7
203	Reduced Nhe1 (Na ⁺ -H ⁺ Exchanger-1) Function Protects ApoE-Deficient Mice From Ang II (Angiotensin II)–Induced Abdominal Aortic Aneurysms. Hypertension, 2020, 76, 87-100.	2.7	7
204	Fluorescence microscopy tensor imaging representations for large-scale dataset analysis. Scientific Reports, 2020, 10, 5632.	3.3	7
205	PET Imaging of Leukocytes in Patients With Acute Myocardial Infarction. JACC: Cardiovascular Imaging, 2015, 8, 1427-1429.	5.3	6
206	Complete genome of Staphylococcus aureus Tager 104 provides evidence of its relation to modern systemic hospital-acquired strains. BMC Genomics, 2016, 17, 179.	2.8	6
207	Multiparametric Imaging of Organ System Interfaces. Circulation: Cardiovascular Imaging, 2017, 10, .	2.6	6
208	Clonal and diverse: revisiting cardiac endothelial cells after myocardial infarction. European Heart Journal, 2019, 40, 2521-2522.	2.2	6
209	Multimodal imaging of bacterial-host interface in mice and piglets with <i>Staphylococcus aureus</i> endocarditis. Science Translational Medicine, 2020, 12, .	12.4	6
210	Shortâ€Term Cessation of Dabigatran Causes a Paradoxical Prothrombotic State. Annals of Neurology, 2021, 89, 444-458.	5. 3	6
211	Mapping Molecular Agents Distributions in Whole Mice Hearts Using Born-Normalized Optical Projection Tomography. PLoS ONE, 2012, 7, e34427.	2.5	5
212	Republished: Healing and adverse remodelling after acute myocardial infarction: role of the cellular immune response. Postgraduate Medical Journal, 2013, 89, 52-58.	1.8	5
213	Spontaneous Degenerative Aortic Valve Disease in New Zealand Obese Mice. Journal of the American Heart Association, 2021, 10, e023131.	3.7	5
214	In Vivo Tracking of Streptococcal Infections of Subcutaneous Origin in a Murine Model. Molecular Imaging and Biology, 2015, 17, 793-801.	2.6	4
215	Imaging of Infarct Healing Predicts Left Ventricular Remodeling and Evolution of Heart Failure. Circulation: Cardiovascular Imaging, 2011, 4, 351-353.	2.6	3
216	Imaging Systemic Inflammation in Patients With Acute Myocardial Infarction. Circulation: Cardiovascular Imaging, 2014, 7, 762-764.	2.6	3

#	Article	IF	CITATIONS
217	Translational Molecular Imaging. Journal of the American College of Cardiology, 2014, 64, 1030-1032.	2.8	3
218	Old, caffeinated, and healthy. Nature Reviews Cardiology, 2017, 14, 194-196.	13.7	3
219	Albumin-Binding MR Probe Detects High-Risk Coronary Plaques in Patients. JACC: Cardiovascular Imaging, 2019, 12, 307-309.	5. 3	3
220	Mischief in the marrow: a root of cardiovascular evil. European Heart Journal, 2022, , .	2.2	3
221	Science to Practice: Will Magnetic Guidance of Microbubbles Play a Role in Clinical Molecular Imaging?. Radiology, 2011, 260, 309-310.	7.3	2
222	Myeloid Cells Remodel the Mitral Valve. Circulation, 2018, 137, 2494-2496.	1.6	2
223	Multiorgan Imaging of Comorbidity andÂCardiovascular Risk. JACC: Cardiovascular Imaging, 2020, 13, 478-480.	5.3	2
224	Reversing Clonal Hematopoiesis and Associated Atherosclerotic Disease By Targeted Antibody-Drug-Conjugate (ADC) Conditioning and Transplant. Blood, 2020, 136, 34-35.	1.4	2
225	Science to Practice: How Will Myocardial Inflammation Be Imaged with MR Imaging?. Radiology, 2012, 264, 309-311.	7.3	1
226	Macrophages in the infarct: Fiery friends or friendly fire?. Journal of Molecular and Cellular Cardiology, 2012, 53, 591-592.	1.9	1
227	Fluorescent Leukocytes Enter Plaque on the Microscope Stage. Circulation Research, 2014, 114, 740-741.	4.5	1
228	Green-channel autofluorescence imaging: A novel and sensitive technique to delineate infarcts. Journal of Neuroscience Methods, 2017, 279, 22-32.	2.5	1
229	Clonal Hematopoiesis Wages War on the Myocardium. Journal of the American College of Cardiology, 2018, 71, 887-889.	2.8	1
230	Smad3 Cranks Up the Appetite of Infarct Macrophages. Circulation Research, 2019, 125, 71-73.	4.5	1
231	Deciphering post-infarct inflammation: Should it heal, would it hurt?. Journal of Nuclear Cardiology, 2020, 27, 2100-2102.	2.1	1
232	Imaging of Heart, Muscle, Vessels., 0,, 257-275.		0
233	Some Macrophages Are Softies. Immunity, 2018, 49, 199-201.	14.3	0
234	Reply to â€~Cardioimmunology of arrhythmias: the role of autoimmune and inflammatory cardiac channelopathies'. Nature Reviews Immunology, 2019, 19, 65-65.	22.7	0

#	Article	IF	CITATIONS
235	Bad company: monocytes in HIV and atherosclerosis. Cardiovascular Research, 2021, 117, 993-994.	3.8	O
236	Innate Lymphoid Cells Participate in Myocardial Inflammation After Ischemia. Journal of the American College of Cardiology, 2021, 78, 1143-1144.	2.8	0
237	Response by Nahrendorf to Letter Regarding Article, "Bone Marrow Endothelial Cells Regulate Myelopoiesis in Diabetes Mellitus― Circulation, 2021, 143, e7-e8.	1.6	О
238	Who Is in the House?. Science Translational Medicine, 2012, 4, .	12.4	0
239	Not Enough Myocytes? Use Fibroblasts!. Science Translational Medicine, 2012, 4, .	12.4	O
240	Who You Gonna Call? Clot-Busters!. Science Translational Medicine, 2012, 4, .	12.4	0
241	You <i>Can</i> Have That Dessertâ€"Sometimes. Science Translational Medicine, 2012, 4, .	12.4	O
242	Surprise After the Prize: Innate Immune Signaling Required for Pluripotency. Science Translational Medicine, 2012, 4, .	12.4	0
243	A Better Pacemaker: Transdifferentiation of Myocytes to Pacemaker Cells. Science Translational Medicine, 2013, 5, .	12.4	0
244	Modeling a Failing Heart Right in the Dish. Science Translational Medicine, 2013, 5, .	12.4	0
245	Mechanisms of Myeloid Cell Modulation of Atherosclerosis. , 0, , 813-824.		0
246	Functionally Distinct Subsets of Monocytes in Mouse and Human Blood. Blood, 2019, 134, 438-438.	1.4	0
247	Rigidity of Cell Fate and Function Among Monocytes. Blood, 2021, 138, 2057-2057.	1.4	0
248	Aortic-intima-resident macrophages are guardians of arterial health. , 2022, 1, 4-5.		0