Julien Camperi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4320584/publications.pdf

Version: 2024-02-01

687363 794594 18 414 13 19 citations h-index g-index papers 19 19 19 339 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Physicochemical and Functional Characterization of Differential CRISPR-Cas9 Ribonucleoprotein Complexes. Analytical Chemistry, 2022, 94, 1432-1440.	6.5	7
2	Real-time monitoring of antibody quality attributes for cell culture production processes in bioreactors via integration of an automated sampling technology with multi-dimensional liquid chromatography mass spectrometry. Journal of Chromatography A, 2022, 1672, 463067.	3.7	7
3	Monitoring multiple quality attributes of a complex Fc-fusion protein during cell culture production processes by mD-LC-MS peptide mapping. Talanta, 2022, 246, 123519.	5.5	7
4	Therapeutic Fcâ€fusion proteins: Current analytical strategies. Journal of Separation Science, 2021, 44, 35-62.	2.5	78
5	Multi-dimensional LC-MS: the next generation characterization of antibody-based therapeutics by unified online bottom-up, middle-up and intact approaches. Analyst, The, 2021, 146, 747-769.	3.5	48
6	Fc galactosylation follows consecutive reaction kinetics and enhances immunoglobulin G hexamerization for complement activation. MAbs, 2021, 13, 1893427.	5.2	36
7	Inter-laboratory study to evaluate the performance of automated online characterization of antibody charge variants by multi-dimensional LC-MS/MS. Talanta, 2021, 234, 122628.	5.5	18
8	Separation methods hyphenated to mass spectrometry for the characterization of the protein glycosylation at the intact level. Journal of Pharmaceutical and Biomedical Analysis, 2020, 178, 112921.	2.8	32
9	Development of Immobilized Enzyme Reactors for the characterization of the glycosylation heterogeneity of a protein. Talanta, 2020, 206, 120171.	5.5	16
10	Identification and semi-relative quantification of intact glycoforms by nano-LC–(Orbitrap)MS: application to the α-subunit of human chorionic gonadotropin and follicle-stimulating hormone. Analytical and Bioanalytical Chemistry, 2020, 412, 5729-5741.	3.7	7
11	Targeted Bottom-up Characterization of Recombinant Monoclonal Antibodies by Multidimensional LC/MS. Analytical Chemistry, 2020, 92, 13420-13426.	6.5	18
12	Analysis of the human chorionic gonadotropin protein at the intact level by HILIC-MS and comparison with RPLC-MS. Analytical and Bioanalytical Chemistry, 2020, 412, 4423-4432.	3.7	15
13	Development of a 3D-LC/MS Workflow for Fast, Automated, and Effective Characterization of Glycosylation Patterns of Biotherapeutic Products. Analytical Chemistry, 2020, 92, 4357-4363.	6.5	29
14	Automated middle-up approach for the characterization of biotherapeutic products by combining on-line hinge-specific digestion with RPLC-HRMS analysis. Journal of Pharmaceutical and Biomedical Analysis, 2020, 182, 113130.	2.8	10
15	Fast and Automated Characterization of Monoclonal Antibody Minor Variants from Cell Cultures by Combined Protein-A and Multidimensional LC/MS Methodologies. Analytical Chemistry, 2020, 92, 8506-8513.	6.5	30
16	First profiling in hydrophilic interaction liquid chromatography of intact human chorionic gonadotropin isoforms. Journal of Pharmaceutical and Biomedical Analysis, 2019, 174, 495-499.	2.8	13
17	First characterizations by capillary electrophoresis of human Chorionic Gonadotropin at the intact level. Talanta, 2019, 193, 77-86.	5.5	24
18	An attempt to characterize the human Chorionic Gonadotropin protein by reversed phase liquid chromatography coupled with high-resolution mass spectrometry at the intact level. Journal of Pharmaceutical and Biomedical Analysis, 2018, 161, 35-44.	2.8	17