List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4320137/publications.pdf Version: 2024-02-01

		19657	32842
204	11,771	61	100
papers	citations	h-index	g-index
211	211	211	13383
all docs	docs citations	times ranked	citing authors

IOHN D FICHED

#	Article	IF	CITATIONS
1	Self-Folding Thermo-Magnetically Responsive Soft Microgrippers. ACS Applied Materials & Interfaces, 2015, 7, 3398-3405.	8.0	499
2	Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. Journal of Biomedical Materials Research Part B, 2003, 64B, 65-69.	3.1	451
3	3D Bioprinting for Organ Regeneration. Advanced Healthcare Materials, 2017, 6, 1601118.	7.6	385
4	4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Scientific Reports, 2016, 6, 27226.	3.3	296
5	4D printing of polymeric materials for tissue and organ regeneration. Materials Today, 2017, 20, 577-591.	14.2	292
6	Bone tissue engineering bioreactors: Dynamic culture and the influence of shear stress. Bone, 2011, 48, 171-181.	2.9	249
7	Evaluating 3Dâ€Printed Biomaterials as Scaffolds for Vascularized Bone Tissue Engineering. Advanced Materials, 2015, 27, 138-144.	21.0	241
8	Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. Journal of Biomedical Materials Research Part B, 2002, 59, 547-556.	3.1	230
9	Assessment methodologies for extrusion-based bioink printability. Biofabrication, 2020, 12, 022003.	7.1	214
10	Stereolithographic Bone Scaffold Design Parameters: Osteogenic Differentiation and Signal Expression. Tissue Engineering - Part B: Reviews, 2010, 16, 523-539.	4.8	209
11	Stimuliâ€Responsive Theragrippers for Chemomechanical Controlled Release. Angewandte Chemie - International Edition, 2014, 53, 8045-8049.	13.8	198
12	Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene) Tj ETQq0 0 0 rg	BT/Oyerlo 11.4	ock 10 Tf 50 3
13	3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomaterialia, 2017, 56, 3-13.	8.3	181
14	Synthesis of poly(propylene fumarate). Nature Protocols, 2009, 4, 518-525.	12.0	174
15	Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomaterialia, 2019, 90, 37-48.	8.3	172
16	The Evolution of Polystyrene as a Cell Culture Material. Tissue Engineering - Part B: Reviews, 2018, 24, 359-372.	4.8	168
17	Synthesis and Characterization of Oligo(poly(ethylene glycol) fumarate) Macromer. Macromolecules, 2001, 34, 2839-2844.	4.8	156
18	Photoinitiated Polymerization of Biomaterials. Annual Review of Materials Research, 2001, 31, 171-181.	9.3	147

#	Article	IF	CITATIONS
19	Strategic Directions in Tissue Engineering. Tissue Engineering, 2007, 13, 2827-2837.	4.6	142
20	The influence of stereolithographic scaffold architecture and composition on osteogenic signal expression with rat bone marrow stromal cells. Biomaterials, 2011, 32, 3750-3763.	11.4	133
21	Evaluation of the In Vitro Cytotoxicity of Cross-Linked Biomaterials. Biomacromolecules, 2013, 14, 1321-1329.	5.4	132
22	Current and Future Perspectives on Skin Tissue Engineering: Key Features of Biomedical Research, Translational Assessment, and Clinical Application. Advanced Healthcare Materials, 2019, 8, e1801471.	7.6	131
23	Effect of Initial Cell Seeding Density on Early Osteogenic Signal Expression of Rat Bone Marrow Stromal Cells Cultured on Cross-Linked Poly(propylene fumarate) Disks. Biomacromolecules, 2009, 10, 1810-1817.	5.4	129
24	3Dâ€Printed Biodegradable Polymeric Vascular Grafts. Advanced Healthcare Materials, 2016, 5, 319-325.	7.6	128
25	Prussian blue nanoparticle-based photothermal therapy combined with checkpoint inhibition for photothermal immunotherapy of neuroblastoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 771-781.	3.3	122
26	4D physiologically adaptable cardiac patch: A 4-month in vivo study for the treatment of myocardial infarction. Science Advances, 2020, 6, eabb5067.	10.3	118
27	Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomaterialia, 2011, 7, 1249-1264.	8.3	115
28	3D bioprinting for cardiovascular regeneration and pharmacology. Advanced Drug Delivery Reviews, 2018, 132, 252-269.	13.7	115
29	Bioreactors to influence stem cell fate: Augmentation of mesenchymal stem cell signaling pathways via dynamic culture systems. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2470-2480.	2.4	113
30	Synthesis of poly(L-lactide) and polyglycolide by ring-opening polymerization. Nature Protocols, 2007, 2, 2767-2771.	12.0	112
31	Thermoreversible hydrogel scaffolds for articular cartilage engineering. Journal of Biomedical Materials Research Part B, 2004, 71A, 268-274.	3.1	109
32	Nanoparticle technology in bone tissue engineering. Journal of Drug Targeting, 2007, 15, 241-252.	4.4	109
33	Continuous digital light processing (cDLP): Highly accurate additive manufacturing of tissue engineered bone scaffolds. Virtual and Physical Prototyping, 2012, 7, 13-24.	10.4	108
34	Bone formation in transforming growth factor ?-1-coated porous poly(propylene fumarate) scaffolds. Journal of Biomedical Materials Research Part B, 2002, 60, 241-251.	3.1	106
35	Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 532-554.	3.5	101
36	Factors Determining Hydrogel Permeability. Annals of the New York Academy of Sciences, 1997, 831, 179-184.	3.8	99

#	Article	IF	CITATIONS
37	Recent advances in 3D printing: vascular network for tissue and organ regeneration. Translational Research, 2019, 211, 46-63.	5.0	92
38	Neural differentiation of pluripotent cells in 3D alginate-based cultures. Biomaterials, 2014, 35, 4636-4645.	11.4	91
39	Enhanced extracellular vesicle production and ethanol-mediated vascularization bioactivity via a 3D-printed scaffold-perfusion bioreactor system. Acta Biomaterialia, 2019, 95, 236-244.	8.3	91
40	3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution. Biofabrication, 2017, 9, 024101.	7.1	89
41	Towards rationally designed biomanufacturing of therapeutic extracellular vesicles: impact of the bioproduction microenvironment. Biotechnology Advances, 2018, 36, 2051-2059.	11.7	88
42	Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation. Acta Biomaterialia, 2016, 32, 161-169.	8.3	87
43	Extrusion-Based 3D Printing of Poly(propylene fumarate) in a Full-Factorial Design. ACS Biomaterials Science and Engineering, 2016, 2, 1771-1780.	5.2	85
44	Development and Characterization of a 3D Printed, Keratin-Based Hydrogel. Annals of Biomedical Engineering, 2017, 45, 237-248.	2.5	82
45	Biomaterial Scaffolds in Pediatric Tissue Engineering. Pediatric Research, 2008, 63, 497-501.	2.3	81
46	Tissue Engineering Solutions for Cleft Palates. Journal of Oral and Maxillofacial Surgery, 2007, 65, 2503-2511.	1.2	79
47	Photoinitiated Cross-Linking of the Biodegradable Polyester Poly(propylene fumarate). Part II. In Vitro Degradation. Biomacromolecules, 2003, 4, 1335-1342.	5.4	77
48	Vascularization in tissue engineering: fundamentals and state-of-art. Progress in Biomedical Engineering, 2020, 2, 012002.	4.9	77
49	Effect of Dynamic Culture and Periodic Compression on Human Mesenchymal Stem Cell Proliferation and Chondrogenesis. Annals of Biomedical Engineering, 2016, 44, 2103-2113.	2.5	76
50	Effect of prevascularization on inÂvivo vascularization of poly(propylene fumarate)/fibrin scaffolds. Biomaterials, 2016, 77, 255-266.	11.4	75
51	<scp>C</scp> ollagen hydrogel scaffold promotes mesenchymal stem cell and endothelial cell coculture for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2017, 105, 1123-1131.	4.0	74
52	3D printed biofunctionalized scaffolds for microfracture repair of cartilage defects. Biomaterials, 2018, 185, 219-231.	11.4	74
53	Photoinitiated Cross-Linking of the Biodegradable Polyester Poly(propylene fumarate). Part I. Determination of Network Structure. Biomacromolecules, 2003, 4, 1327-1334.	5.4	72
54	Tubular Perfusion System for the Long-Term Dynamic Culture of Human Mesenchymal Stem Cells. Tissue Engineering - Part C: Methods, 2011, 17, 337-348.	2.1	72

#	Article	IF	CITATIONS
55	Macroporous Hydrogels Upregulate Osteogenic Signal Expression and Promote Bone Regeneration. Biomacromolecules, 2010, 11, 1160-1168.	5.4	71
56	3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance. Biomaterials, 2019, 222, 119423.	11.4	71
57	Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO ₂ for bone tissue applications. Biotechnology and Bioengineering, 2018, 115, 989-999.	3.3	70
58	Bioprinted osteon-like scaffolds enhance <i>in vivo</i> neovascularization. Biofabrication, 2019, 11, 025013.	7.1	70
59	Recent Developments in Cyclic Acetal Biomaterials for Tissue Engineering Applications. Pharmaceutical Research, 2008, 25, 2348-2356.	3.5	69
60	3D printing of resorbable poly(propylene fumarate) tissue engineering scaffolds. MRS Bulletin, 2015, 40, 119-126.	3.5	69
61	<i>In Vitro</i> Endothelialization of Biodegradable Vascular Grafts Via Endothelial Progenitor Cell Seeding and Maturation in a Tubular Perfusion System Bioreactor. Tissue Engineering - Part C: Methods, 2016, 22, 663-670.	2.1	67
62	The potential impact of bone tissue engineering in the clinic. Regenerative Medicine, 2016, 11, 571-587.	1.7	65
63	Synthesis and characterization of cyclic acetal based degradable hydrogels. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 67-73.	4.3	60
64	Development of a 3D Printed, Bioengineered Placenta Model to Evaluate the Role of Trophoblast Migration in Preeclampsia. ACS Biomaterials Science and Engineering, 2016, 2, 1817-1826.	5.2	59
65	Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds. Journal of Controlled Release, 2011, 156, 239-245.	9.9	58
66	Macroporous Hydrogel Scaffolds and Their Characterization By Optical Coherence Tomography. Tissue Engineering - Part C: Methods, 2011, 17, 101-112.	2.1	55
67	Mesenchymal Stem Cells: Roles and Relationships in Vascularization. Tissue Engineering - Part B: Reviews, 2014, 20, 218-228.	4.8	55
68	Three-Dimensional Printing Articular Cartilage: Recapitulating the Complexity of Native Tissue . Tissue Engineering - Part B: Reviews, 2017, 23, 225-236.	4.8	55
69	Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package. Biofabrication, 2014, 6, 015003.	7.1	53
70	Effect of biomaterial properties on bone healing in a rabbit tooth extraction socket model. Journal of Biomedical Materials Research Part B, 2004, 68A, 428-438.	3.1	52
71	Synthesis and Properties of Poly[poly(ethylene glycol)-co-cyclic acetal] Based Hydrogels. Macromolecules, 2007, 40, 7625-7632.	4.8	52
72	Cyclic acetal hydrogel system for bone marrow stromal cell encapsulation and osteodifferentiation. Journal of Biomedical Materials Research - Part A, 2008, 86A, 662-670.	4.0	51

#	Article	IF	CITATIONS
73	Hybrid 3D Printing of Synthetic and Cellâ€Laden Bioinks for Shape Retaining Soft Tissue Grafts. Advanced Functional Materials, 2020, 30, 1907145.	14.9	50
74	Evaluating Changes in Structure and Cytotoxicity During <i>In Vitro</i> Degradation of Three-Dimensional Printed Scaffolds. Tissue Engineering - Part A, 2015, 21, 1642-1653.	3.1	49
75	Overcoming Ovarian Cancer Drug Resistance with a Cold Responsive Nanomaterial. ACS Central Science, 2018, 4, 567-581.	11.3	49
76	ZEB2, a master regulator of the epithelial–mesenchymal transition, mediates trophoblast differentiation. Molecular Human Reproduction, 2019, 25, 61-75.	2.8	49
77	Repair of Tympanic Membrane Perforations with Customized Bioprinted Ear Grafts Using Chinchilla Models. Tissue Engineering - Part A, 2018, 24, 527-535.	3.1	47
78	4D Selfâ€Morphing Culture Substrate for Modulating Cell Differentiation. Advanced Science, 2020, 7, 1902403.	11.2	46
79	Human mesenchymal stem cell position within scaffolds influences cell fate during dynamic culture. Biotechnology and Bioengineering, 2012, 109, 2381-2391.	3.3	45
80	Photocrosslinked alginate with hyaluronic acid hydrogels as vehicles for mesenchymal stem cell encapsulation and chondrogenesis. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1962-1970.	4.0	45
81	Catheter Ablation for Control of Ventricular Tachycardia: A Report of the Percutaneous Cardiac Mapping and Ablation Registry PACE - Pacing and Clinical Electrophysiology, 1986, 9, 1391-1395.	1.2	44
82	Chondrocyte Signaling and Artificial Matrices for Articular Cartilage Engineering. , 2006, 585, 67-86.		44
83	Synergistic effect of sustained release of growth factors and dynamic culture on osteoblastic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2015, 103, 2161-2171.	4.0	44
84	Poly(propylene fumarate) and Poly(DL-lactic-co-glycolic acid) as Scaffold Materials for Solid and Foam-Coated Composite Tissue-Engineered Constructs for Cranial Reconstruction. Tissue Engineering, 2003, 9, 495-504.	4.6	42
85	Tubular perfusion system culture of human mesenchymal stem cells on polyâ€ <scp>Lâ€</scp> lactic acid scaffolds produced using a supercritical carbon dioxideâ€assisted process. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2563-2572.	4.0	42
86	Dynamic Bioreactor Culture of High Volume Engineered Bone Tissue. Tissue Engineering - Part A, 2016, 22, 263-271.	3.1	42
87	Digital micromirror device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds. Materials Science and Engineering C, 2016, 61, 301-311.	7.3	42
88	Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues. Annals of Biomedical Engineering, 2016, 44, 667-679.	2.5	42
89	Placental basement membrane proteins are required for effective cytotrophoblast invasion in a threeâ€dimensional bioprinted placenta model. Journal of Biomedical Materials Research - Part A, 2018, 106, 1476-1487.	4.0	42
90	A liposome/gelatin methacrylate nanocomposite hydrogel system for delivery of stromal cell-derived factor-11± and stimulation of cell migration. Acta Biomaterialia, 2020, 108, 67-76.	8.3	41

#	Article	IF	CITATIONS
91	Chemoâ€Enzymatic Synthesis of Degradable PTMCâ€ <i>b</i> â€PECAâ€ <i>b</i> â€PTMC Triblock Copolymers and their Micelle Formation for pHâ€Dependent Controlled Release. Macromolecular Bioscience, 2009, 9, 613-621.	4.1	39
92	Phenotypic Variations in Chondrocyte Subpopulations and Their Response to In Vitro Culture and External Stimuli. Annals of Biomedical Engineering, 2010, 38, 3371-3388.	2.5	39
93	3D Printed Pericardium Hydrogels To Promote Wound Healing in Vascular Applications. Biomacromolecules, 2017, 18, 3802-3811.	5.4	39
94	3D printing in cell culture systems and medical applications. Applied Physics Reviews, 2018, 5, 041109.	11.3	38
95	Extracellular Matrixâ€Based Biohybrid Materials for Engineering Compliant, Matrixâ€Dense Tissues. Advanced Healthcare Materials, 2015, 4, 2475-2487.	7.6	37
96	Microphysiological systems of the placental barrier. Advanced Drug Delivery Reviews, 2020, 161-162, 161-175.	13.7	37
97	Multiple initiators and dyes for continuous Digital Light Processing (cDLP) additive manufacture of resorbable bone tissue engineering scaffolds. Virtual and Physical Prototyping, 2014, 9, 3-9.	10.4	36
98	The Influence of Printing Parameters and Cell Density on Bioink Printing Outcomes. Tissue Engineering - Part A, 2020, 26, 1349-1358.	3.1	36
99	<i>In Vivo</i> Bone Regeneration Using Tubular Perfusion System Bioreactor Cultured Nanofibrous Scaffolds. Tissue Engineering - Part A, 2014, 20, 139-146.	3.1	34
100	3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor. Annals of Biomedical Engineering, 2016, 44, 3435-3445.	2.5	34
101	Effect of construct properties on encapsulated chondrocyte expression of insulin-like growth factor-1. Biomaterials, 2007, 28, 299-306.	11.4	32
102	Addition of Hyaluronic Acid to Alginate Embedded Chondrocytes Interferes with Insulin-like Growth Factor-1 Signaling <i>In Vitro</i> and <i>In Vivo</i> . Tissue Engineering - Part A, 2009, 15, 3449-3459.	3.1	32
103	Effect of Transforming Growth Factor β2 on Marrow-Infused Foam Poly(Propylene Fumarate) Tissue-Engineered Constructs for the Repair of Critical-Size Cranial Defects in Rabbits. Tissue Engineering, 2005, 11, 923-939.	4.6	31
104	A Fluidic Culture Platform for Spatially Patterned Cell Growth, Differentiation, and Cocultures. Tissue Engineering - Part A, 2018, 24, 1715-1732.	3.1	31
105	Effects of Exogenous IGF-1 Delivery on the Early Expression of IGF-1 Signaling Molecules by Alginate Embedded Chondrocytes. Tissue Engineering - Part A, 2008, 14, 1263-1273.	3.1	30
106	Tissue response and orbital floor regeneration using cyclic acetal hydrogels. Journal of Biomedical Materials Research - Part A, 2009, 90A, 819-829.	4.0	30
107	Effects of Shear Stress Gradients on Ewing Sarcoma Cells Using 3D Printed Scaffolds and Flow Perfusion. ACS Biomaterials Science and Engineering, 2018, 4, 347-356.	5.2	30
108	Trophoblast–endothelium signaling involves angiogenesis and apoptosis in a dynamic bioprinted placenta model. Biotechnology and Bioengineering, 2019, 116, 181-192.	3.3	30

#	Article	IF	CITATIONS
109	Incorporation of fast dissolving glucose porogens and poly(lactic-co-glycolic acid) microparticles within calcium phosphate cements for bone tissue regeneration. Acta Biomaterialia, 2018, 78, 341-350.	8.3	28
110	Biomimetic Placenta-Fetus Model Demonstrating Maternal–Fetal Transmission and Fetal Neural Toxicity of Zika Virus. Annals of Biomedical Engineering, 2018, 46, 1963-1974.	2.5	28
111	In Vitro Models for Studying Transport Across Epithelial Tissue Barriers. Annals of Biomedical Engineering, 2019, 47, 1-21.	2.5	28
112	Development of keratin-based membranes for potential use in skin repair. Acta Biomaterialia, 2019, 83, 177-188.	8.3	28
113	Addressing present pitfalls in 3D printing for tissue engineering to enhance future potential. APL Bioengineering, 2020, 4, 010901.	6.2	28
114	In vitro degradation and fracture toughness of multilayered porous poly(propylene) Tj ETQq0 0 0 rgBT /Overlock 159-164.	10 Tf 50 5 3.1	47 Td (fumai 27
115	Osteogenic Differentiation of Bone Marrow Stromal Cells Induced by Coculture with Chondrocytes Encapsulated in Three-Dimensional Matrices. Tissue Engineering - Part A, 2009, 15, 1181-1190.	3.1	27
116	Formation of an Aggregated Alginate Construct in a Tubular Perfusion System. Tissue Engineering - Part C: Methods, 2011, 17, 1171-1178.	2.1	27
117	Bioengineering Strategies to Treat Female Infertility. Tissue Engineering - Part B: Reviews, 2017, 23, 294-306.	4.8	27
118	Three dimensional extrusion printing induces polymer molecule alignment and cell organization within engineered cartilage. Journal of Biomedical Materials Research - Part A, 2018, 106, 2190-2199.	4.0	27
119	Matrix molecule influence on chondrocyte phenotype and proteoglycan 4 expression by alginateâ€embedded zonal chondrocytes and mesenchymal stem cells. Journal of Orthopaedic Research, 2012, 30, 1886-1897.	2.3	26
120	Sustained released of bioactive mesenchymal stromal cellâ€derived extracellular vesicles from 3Dâ€printed gelatin methacrylate hydrogels. Journal of Biomedical Materials Research - Part A, 2022, 110, 1190-1198.	4.0	26
121	Synthesis and properties of cyclic acetal biomaterials. Journal of Biomedical Materials Research - Part A, 2007, 81A, 594-602.	4.0	25
122	Gene expression of alginate-embedded chondrocyte subpopulations and their response to exogenous IGF-1 delivery. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 179-192.	2.7	25
123	<i>In Vivo</i> Evaluation of Three-Dimensional Printed, Keratin-Based Hydrogels in a Porcine Thermal Burn Model. Tissue Engineering - Part A, 2020, 26, 265-278.	3.1	25
124	Assessment of decellularized pericardial extracellular matrix and poly(propylene fumarate) biohybrid for small-diameter vascular graft applications. Acta Biomaterialia, 2020, 110, 68-81.	8.3	25
125	3D printed cellulose based product applications. Materials Chemistry Frontiers, 2022, 6, 254-279.	5.9	25
126	Reinforced Pericardium as a Hybrid Material for Cardiovascular Applications. Tissue Engineering - Part A. 2014, 20, 2807-2816.	3.1	24

#	Article	IF	CITATIONS
127	Cell-Laden 3D Printed Scaffolds for Bone Tissue Engineering. Clinical Reviews in Bone and Mineral Metabolism, 2015, 13, 245-255.	0.8	24
128	Development and assessment of a biodegradable solvent cast polyester fabric smallâ€diameter vascular graft. Journal of Biomedical Materials Research - Part A, 2014, 102, 1972-1981.	4.0	23
129	3D printing bioactive PLGA scaffolds using DMSO as a removable solvent. Bioprinting, 2018, 10, e00038.	5.8	23
130	Multimaterial Dual Gradient Three-Dimensional Printing for Osteogenic Differentiation and Spatial Segregation. Tissue Engineering - Part A, 2020, 26, 239-252.	3.1	23
131	EH Networks as a Scaffold for Skeletal Muscle Regeneration in Abdominal Wall Hernia Repair. Journal of Surgical Research, 2008, 149, 76-83.	1.6	22
132	Coculture Strategies in Bone Tissue Engineering: The Impact of Culture Conditions on Pluripotent Stem Cell Populations. Tissue Engineering - Part B: Reviews, 2012, 18, 312-321.	4.8	22
133	Human Mesenchymal Stem Cellâ€Derived Miniature Joint System for Disease Modeling and Drug Testing. Advanced Science, 2022, 9, e2105909.	11.2	22
134	Characterization of cyclic acetal hydroxyapatite nanocomposites for craniofacial tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 94A, 408-418.	4.0	21
135	Tunable osteogenic differentiation of hMPCs in tubular perfusion system bioreactor. Biotechnology and Bioengineering, 2016, 113, 1805-1813.	3.3	20
136	Characterizing placental stiffness using ultrasound shear-wave elastography in healthy and preeclamptic pregnancies. Archives of Gynecology and Obstetrics, 2020, 302, 1103-1112.	1.7	20
137	Xâ€ray phase contrast imaging of calcified tissue and biomaterial structure in bioreactor engineered tissues. Biotechnology and Bioengineering, 2015, 112, 612-620.	3.3	16
138	Cyclic Acetal Hydroxyapatite Nanocomposites for Orbital Bone Regeneration. Tissue Engineering - Part A, 2010, 16, 55-65.	3.1	15
139	Hydroxyapatiteâ€doped alginate beads as scaffolds for the osteoblastic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2016, 104, 2325-2333.	4.0	15
140	Effect of Dexamethasone on Room Temperature Three-Dimensional Printing, Rheology, and Degradation of a Low Modulus Polyester for Soft Tissue Engineering. ACS Biomaterials Science and Engineering, 2019, 5, 846-858.	5.2	15
141	Challenges Associated with Regeneration of Orbital Floor Bone. Tissue Engineering - Part B: Reviews, 2010, 16, 541-550.	4.8	14
142	Development of a Dynamic Stem Cell Culture Platform for Mesenchymal Stem Cell Adhesion and Evaluation. Molecular Pharmaceutics, 2014, 11, 2172-2181.	4.6	14
143	Bioinspired One Cell Culture Isolates Highly Tumorigenic and Metastatic Cancer Stem Cells Capable of Multilineage Differentiation. Advanced Science, 2020, 7, 2000259.	11.2	14
144	Liposomal SDF-1 Alpha Delivery in Nanocomposite Hydrogels Promotes Macrophage Phenotype Changes and Skin Tissue Regeneration. ACS Biomaterials Science and Engineering, 2021, 7, 5230-5241.	5.2	14

#	Article	IF	CITATIONS
145	Skeletal muscle tissue engineering approaches to abdominal wall hernia repair. Birth Defects Research Part C: Embryo Today Reviews, 2008, 84, 315-321.	3.6	13
146	Porous EH and EH-PEG Scaffolds as Gene Delivery Vehicles to Skeletal Muscle. Pharmaceutical Research, 2011, 28, 1306-1316.	3.5	13
147	Engineering Superficial Zone Chondrocytes from Mesenchymal Stem Cells. Tissue Engineering - Part C: Methods, 2014, 20, 630-640.	2.1	13
148	Sustained delivery of vascular endothelial growth factor from mesoporous calciumâ€deficient hydroxyapatite microparticles promotes in vitro angiogenesis and osteogenesis. Journal of Biomedical Materials Research - Part A, 2021, 109, 1080-1087.	4.0	13
149	Long-Term Sustained Drug Delivery via 3D Printed Masks for the Development of a Heparin-Loaded Interlayer in Vascular Tissue Engineering Applications. ACS Applied Materials & Interfaces, 2021, 13, 50812-50822.	8.0	13
150	Micro―and Macrobioprinting: Current Trends in Tissue Modeling and Organ Fabrication. Small Methods, 2018, 2, 1700318.	8.6	12
151	Model Placental Barrier Phenotypic Response to Fluoxetine and Sertraline: A Comparative Study. Advanced Healthcare Materials, 2019, 8, 1900476.	7.6	12
152	Natural and Synthetic Polymeric Scaffolds. , 2009, , 415-442.		12
153	Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering. Biofabrication, 2022, 14, 025015.	7.1	12
154	Cyclic acetal hydroxyapatite composites and endogenous osteogenic gene expression of rat marrow stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 2009, 4, n/a-n/a.	2.7	11
155	Extracellular Matrix for Small-Diameter Vascular Grafts. Tissue Engineering - Part A, 2020, 26, 1388-1401.	3.1	11
156	Fabrication of centimeter-sized 3D constructs with patterned endothelial cells through assembly of cell-laden microbeads as a potential bone graft. Acta Biomaterialia, 2021, 121, 204-213.	8.3	11
157	Mechanisms of angiogenic incompetence in Hutchinson–Gilford progeria via downregulation of endothelial NOS. Aging Cell, 2021, 20, e13388.	6.7	11
158	Cellular responses to degradable cyclic acetal modified PEG hydrogels. Journal of Biomedical Materials Research - Part A, 2009, 90A, 863-873.	4.0	10
159	In vitro effects of cisplatin-functionalized silica nanoparticles on chondrocytes. Journal of Nanoparticle Research, 2010, 12, 2757-2770.	1.9	10
160	Photodynamic Therapy for Biomodulation and Disinfection in Implant Dentistry: Is It Feasible and Effective?. Photochemistry and Photobiology, 2021, 97, 916-929.	2.5	10
161	Tubular perfusion system for chondrocyte culture and superficial zone protein expression. Journal of Biomedical Materials Research - Part A, 2015, 103, 1864-1874.	4.0	9
162	Imaging stem cell distribution, growth, migration, and differentiation in 3â€Ð scaffolds for bone tissue engineering using mesoscopic fluorescence tomography. Biotechnology and Bioengineering, 2018, 115, 257-265.	3.3	9

#	Article	IF	CITATIONS
163	Synthetic polymer coatings diminish chronic inflammation risk in large ECMâ€based materials. Journal of Biomedical Materials Research - Part A, 2019, 107, 494-504.	4.0	9
164	Translation and Validation of Spiritual Well-Being Questionnaire SHALOM in Lithuanian Language, Culture and Health Care Practice. Religions, 2018, 9, 156.	0.6	8
165	Perfusion Bioreactor Culture of Bone Marrow Stromal Cells Enhances Cranial Defect Regeneration. Plastic and Reconstructive Surgery, 2019, 143, 993e-1002e.	1.4	8
166	Dual Extrusion Patterning Drives Tissue Development Aesthetics and Shape Retention in 3D Printed Nippleâ€Areola Constructs. Advanced Healthcare Materials, 2021, 10, e2101249.	7.6	8
167	Centrifugation Assay for Measuring Adhesion of Serially Passaged Bovine Chondrocytes to Polystyrene Surfaces. Tissue Engineering - Part C: Methods, 2012, 18, 537-544.	2.1	7
168	Enhanced Viability of Endothelial Colony Forming Cells in Fibrin Microbeads for Sensor Vascularization. Sensors, 2015, 15, 23886-23902.	3.8	7
169	Assessing SSRIs' effects on fetal cardiomyocytes utilizing placenta-fetus model. Acta Biomaterialia, 2019, 99, 258-268.	8.3	7
170	Concurrent multi-lineage differentiation of mesenchymal stem cells through spatial presentation of growth factors. Biomedical Materials (Bristol), 2020, 15, 055035.	3.3	7
171	Incorporating a structural extracellular matrix gradient into a porcine urinary bladder matrix <scp>â€based</scp> hydrogel dermal scaffold. Journal of Biomedical Materials Research - Part A, 2021, 109, 1893-1904.	4.0	7
172	Assessment of the Effects of Energy Density in Crosslinking of Keratin-Based Photo-Sensitive Resin. , 2018, , .		6
173	Dualâ€chambered membrane bioreactor for coculture of stratified cell populations. Biotechnology and Bioengineering, 2019, 116, 3253-3268.	3.3	6
174	Aminated 3D Printed Polystyrene Maintains Stem Cell Proliferation and Osteogenic Differentiation. Tissue Engineering - Part C: Methods, 2020, 26, 118-131.	2.1	6
175	Bioinks for Three-Dimensional Printing in Regenerative Medicine. , 2019, , 805-830.		5
176	Biomechanical Aspects of Osteochondral Regeneration: Implications and Strategies for 3D Bioprinting. Tissue Engineering - Part B: Reviews, 2021, , .	4.8	5
177	Polymeric Scaffolds for Tissue Engineering Applications. , 2007, , 8-1-8-18.		5
178	Controlled Delivery of Tissue Inductive Factors in a Cardiovascular Hybrid Biomaterial Scaffold. ACS Biomaterials Science and Engineering, 2017, 3, 1350-1358.	5.2	4
179	Development of surface functionalization strategies for 3Dâ€printed polystyrene constructs. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2566-2578.	3.4	4
180	Overview of Tissue Engineering Concepts and Applications. , 2020, , 1289-1316.		4

Overview of Tissue Engineering Concepts and Applications. , 2020, , 1289-1316. 180

#	Article	IF	CITATIONS
181	Noncovalent reversible binding-enabled facile fabrication of leak-free PDMS microfluidic devices without plasma treatment for convenient cell loading and retrieval. Bioactive Materials, 2022, 16, 346-358.	15.6	4
182	Direct-Write Construction of Tissue-Engineered Scaffolds. Materials Research Society Symposia Proceedings, 2001, 698, 551.	0.1	3
183	Engineering Niches for Cartilage Tissue Regeneration â^—. , 2017, , 531-546.		3
184	Engineering Polymeric Scaffolds for Bone Grafts. , 2007, , 81-94.		3
185	Tomorrow's Tissue Engineering Triumphs Require Understanding of Today's Achievements. Tissue Engineering - Part B: Reviews, 2008, 14, 1-1.	4.8	2
186	Quantitative assessment of macroporous cell scaffold structures using optical coherence tomography (OCT). , 2009, , .		2
187	Investigation of pore structure and cell distribution in EH-PEG hydrogel scaffold using optical coherence tomography and fluorescence microscopy. , 2010, , .		2
188	Fabrication and characterization of porous EH scaffolds and EHâ€PEG bilayers. Journal of Biomedical Materials Research - Part A, 2011, 97A, 264-271.	4.0	2
189	Separation of Mesenchymal Stem Cells Through a Strategic Centrifugation Protocol. Tissue Engineering - Part C: Methods, 2016, 22, 348-359.	2.1	2
190	Programmable Culture Substrates: 4D Selfâ€Morphing Culture Substrate for Modulating Cell Differentiation (Adv. Sci. 5/2020). Advanced Science, 2020, 7, 2070034.	11.2	2
191	3D printing technologies for <i>in vitro</i> vaccine testing platforms and vaccine delivery systems against infectious diseases. Essays in Biochemistry, 2021, 65, 519-531.	4.7	2
192	Natural and Synthetic Polymeric Scaffolds. , 2021, , 257-283.		2
193	Bioreactors and Scale-Up in Bone Tissue Engineering. , 2022, , 225-247.		2
194	A Continued Commitment to Quality Research in Tissue Engineering. Tissue Engineering - Part A, 2008, 14, 1457-1458.	3.1	1
195	Cartilage Engineering: Current Status and Future Trends. , 2011, , 279-306.		1
196	Three-dimensional imaging of stem cell distribution within tissue engineering scaffolds using angled fluorescent laminar optical tomography (aFLOT). , 2011, , .		1
197	The Maturation of <i>Tissue Engineering</i> . Tissue Engineering - Part A, 2015, 21, 2473-2475.	3.1	1
198	Rock inhibitor may compromise human induced pluripotent stem cells for cardiac differentiation in 3D. Bioactive Materials, 2021, 9, 508-522.	15.6	1

#	Article	IF	CITATIONS
199	Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. , 2003, 64B, 65.		1
200	Recent Advances in Senotherapeutics Delivery. Tissue Engineering - Part B: Reviews, 2022, 28, 1223-1234.	4.8	1
201	Biological Implications of Polymeric Scaffolds for Bone Tissue Engineering Developed via Solid Freeform Fabrication. , 2012, , 483-507.		0
202	Fabrication and Printing of Multi-material Hydrogels. , 2018, , 397-430.		0
203	Engineered Liver Tissue Culture in an In Vitro Tubular Perfusion System. Tissue Engineering - Part A, 2020, 26, 1369-1377.	3.1	0
204	A Special Dedication to Editor-in-Chief, Dr. Tony Mikos. Tissue Engineering - Part A, 2020, 26, 1223-1223.	3.1	0