
Aida Serra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4319028/publications.pdf Version: 2024-02-01

AIDA SEDDA

#	Article	IF	CITATIONS
1	Plant-derived nootropics and human cognition: A systematic review. Critical Reviews in Food Science and Nutrition, 2023, 63, 5521-5545.	10.3	9
2	Industrial Byâ€Products As a Novel Circular Source of Biocompatible Extracellular Vesicles. Advanced Functional Materials, 2022, 32, .	14.9	10
3	Characterization and application of natural and recombinant butelase-1 to improve industrial enzymes by end-to-end circularization. RSC Advances, 2021, 11, 23105-23112.	3.6	12
4	The legumain McPAL1 from Momordica cochinchinensis is a highly stable Asx-specific splicing enzyme. Journal of Biological Chemistry, 2021, 297, 101325.	3.4	9
5	Turning an Asparaginyl Endopeptidase into a Peptide Ligase. ACS Catalysis, 2020, 10, 8825-8834.	11.2	29
6	System-wide molecular dynamics of endothelial dysfunction in Gram-negative sepsis. BMC Biology, 2020, 18, 175.	3.8	6
7	Alzheimer's disease progression characterized by alterations in the molecular profiles and biogenesis of brain extracellular vesicles. Alzheimer's Research and Therapy, 2020, 12, 54.	6.2	47
8	Prooxidant modifications in the cryptome of beef jerky, the deleterious post-digestion composition of processed meat snacks. Food Research International, 2019, 125, 108569.	6.2	3
9	Brainâ€derived and circulating vesicle profiles indicate neurovascular unit dysfunction in early Alzheimer's disease. Brain Pathology, 2019, 29, 593-605.	4.1	44
10	Degenerative protein modifications in the aging vasculature and central nervous system: A problem shared is not always halved. Ageing Research Reviews, 2019, 53, 100909.	10.9	22
11	Structural determinants for peptide-bond formation by asparaginyl ligases. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11737-11746.	7.1	81
12	Potentides: New Cysteineâ€Rich Peptides with Unusual Disulfide Connectivity from Potentilla anserina. ChemBioChem, 2019, 20, 1995-2004.	2.6	10
13	Astratides: Insulin-Modulating, Insecticidal, and Antifungal Cysteine-Rich Peptides from <i>Astragalus membranaceus</i> . Journal of Natural Products, 2019, 82, 194-204.	3.0	21
14	Identification of Arenin, a Novel Kunitz-Like Polypeptide from the Skin Secretions of Dryophytes arenicolor. International Journal of Molecular Sciences, 2018, 19, 3644.	4.1	0
15	Vascular Bed Molecular Profiling by Differential Systemic Decellularization In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2396-2409.	2.4	16
16	Molecular diversity and function of jasmintides from Jasminum sambac. BMC Plant Biology, 2018, 18, 144.	3.6	8
17	Online Removal of Sodium Dodecyl Sulfate via Weak Cation Exchange in Liquid Chromatography–Mass Spectrometry Based Proteomics. Journal of Proteome Research, 2018, 17, 2390-2400.	3.7	9
18	Monocyte adhesion to atherosclerotic matrix proteins is enhanced by Asn-Gly-Arg deamidation. Scientific Reports, 2017, 7, 5765.	3.3	23

AIDA SERRA

#	Article	IF	CITATIONS
19	Vaccatides: Antifungal Glutamine-Rich Hevein-Like Peptides from Vaccaria hispanica. Frontiers in Plant Science, 2017, 8, 1100.	3.6	23
20	Brain ureido degenerative protein modifications are associated with neuroinflammation and proteinopathy in Alzheimer's disease with cerebrovascular disease. Journal of Neuroinflammation, 2017, 14, 175.	7.2	35
21	LERLIC-MS/MS for In-depth Characterization and Quantification of Glutamine and Asparagine Deamidation in Shotgun Proteomics. Journal of Visualized Experiments, 2017, , .	0.3	4
22	Ginkgotides: Proline-Rich Hevein-Like Peptides from Gymnosperm Ginkgo biloba. Frontiers in Plant Science, 2016, 7, 1639.	3.6	29
23	Enrichment of extracellular vesicles from tissues of the central nervous system by PROSPR. Molecular Neurodegeneration, 2016, 11, 41.	10.8	76
24	Commercial processed soy-based food product contains glycated and glycoxidated lunasin proteoforms. Scientific Reports, 2016, 6, 26106.	3.3	22
25	A high-throughput peptidomic strategy to decipher the molecular diversity of cyclic cysteine-rich peptides. Scientific Reports, 2016, 6, 23005.	3.3	48
26	Characterization of Glutamine Deamidation by Long-Length Electrostatic Repulsion-Hydrophilic Interaction Chromatography-Tandem Mass Spectrometry (LERLIC-MS/MS) in Shotgun Proteomics. Analytical Chemistry, 2016, 88, 10573-10582.	6.5	31
27	Gender differences in white matter pathology and mitochondrial dysfunction in Alzheimer's disease with cerebrovascular disease. Molecular Brain, 2016, 9, 27.	2.6	58
28	Plasma proteome coverage is increased by unique peptide recovery from sodium deoxycholate precipitate. Analytical and Bioanalytical Chemistry, 2016, 408, 1963-1973.	3.7	20
29	Extracellular vesicles are rapidly purified from human plasma by PRotein Organic Solvent PRecipitation (PROSPR). Scientific Reports, 2015, 5, 14664.	3.3	99
30	A novel strategy for the discrimination of gelatinous Chinese medicines based on enzymatic digestion followed by nano-flow liquid chromatography in tandem with orbitrap mass spectrum detection. International Journal of Nanomedicine, 2015, 10, 4947.	6.7	35
31	Cysteine-Rich Peptide Family with Unusual Disulfide Connectivity from <i>Jasminum sambac</i> . Journal of Natural Products, 2015, 78, 2791-2799.	3.0	13
32	Uncovering Neurodegenerative Protein Modifications via Proteomic Profiling. International Review of Neurobiology, 2015, 121, 87-116.	2.0	28
33	Temporal lobe proteins implicated in synaptic failure exhibit differential expression and deamidation in vascular dementia. Neurochemistry International, 2015, 80, 87-98.	3.8	26
34	Nutrikinetic studies of food bioactive compounds: from <i>in vitro</i> to <i>in vivo</i> approaches. International Journal of Food Sciences and Nutrition, 2015, 66, S41-S52.	2.8	30
35	Adaptation of the standard enzymatic protocol (Megazyme method) to microplaque format for β-(1,3)(1,4)-d-glucan determination in cereal based samples with a wide range of β-glucan content. Journal of Cereal Science, 2014, 59, 224-227.	3.7	10
36	Effect of the co-occurring components from olive oil and thyme extracts on the antioxidant status and its bioavailability in an acute ingestion in rats. Food and Function, 2014, 5, 740.	4.6	25

Aida Serra

#	Article	IF	CITATIONS
37	In vivo distribution and deconjugation of hydroxytyrosol phase II metabolites in red blood cells: A potential new target for hydroxytyrosol. Journal of Functional Foods, 2014, 10, 139-143.	3.4	26
38	Dose-dependent metabolic disposition of hydroxytyrosol and formation of mercapturates in rats. Pharmacological Research, 2013, 77, 47-56.	7.1	54
39	Application of dried spot cards as a rapid sample treatment method for determining hydroxytyrosol metabolites in human urine samples. Comparison with microelution solid-phase extraction. Analytical and Bioanalytical Chemistry, 2013, 405, 9179-9192.	3.7	29
40	Analysis of food polyphenols by ultra high-performance liquid chromatography coupled to mass spectrometry: An overview. Journal of Chromatography A, 2013, 1292, 66-82.	3.7	141
41	Distribution of procyanidins and their metabolites in rat plasma and tissues in relation to ingestion of procyanidin-enriched or procyanidin-rich cocoa creams. European Journal of Nutrition, 2013, 52, 1029-1038.	3.9	56
42	Flavanol metabolites distribute in visceral adipose depots after a long-term intake of grape seed proanthocyanidin extract in rats. British Journal of Nutrition, 2013, 110, 1411-1420.	2.3	24
43	Bioavailability of procyanidin dimers and trimers and matrix food effects in <i>in vitro</i> and <i>in vivo</i> models – CORRIGENDUM. British Journal of Nutrition, 2013, 109, 2308-2308.	2.3	2
44	Validation of determination of plasma metabolites derived from thyme bioactive compounds by improved liquid chromatography coupled to tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 905, 75-84.	2.3	35
45	Fetal programming of dietary fructose and saturated fat on hepatic quercetin glucuronidation in rats. Nutrition, 2012, 28, 1165-1171.	2.4	7
46	Distribution of olive oil phenolic compounds in rat tissues after administration of a phenolic extract from olive cake. Molecular Nutrition and Food Research, 2012, 56, 486-496.	3.3	136
47	Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chemistry, 2012, 130, 383-393.	8.2	178
48	Distribution of procyanidins and their metabolites in rat plasma and tissues after an acute intake of hazelnut extract. Food and Function, 2011, 2, 562.	4.6	45
49	Metabolic pathways of the colonic metabolism of procyanidins (monomers and dimers) and alkaloids. Food Chemistry, 2011, 126, 1127-1137.	8.2	46
50	Rapid methods to determine procyanidins, anthocyanins, theobromine and caffeine in rat tissues by liquid chromatography-tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 1519-1528.	2.3	40
51	Bioavailability of procyanidin dimers and trimers and matrix food effects in <i>in vitro</i> and <i>in vivo</i> models. British Journal of Nutrition, 2010, 103, 944-952.	2.3	239
52	Determination of procyanidins and their metabolites in plasma samples by improved liquid chromatography–tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 1169-1176.	2.3	84