Chen Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/431845/publications.pdf Version: 2024-02-01

		5896	4432
168	31,677	81	172
papers	citations	h-index	g-index
172	172	172	21924
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science, 2014, 343, 1339-1343.	12.6	2,376
2	Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule, 2018, 2, 1242-1264.	24.0	1,618
3	Core–Shell ZIF-8@ZIF-67-Derived CoP Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. Journal of the American Chemical Society, 2018, 140, 2610-2618.	13.7	1,556
4	Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nature Catalysis, 2018, 1, 985-992.	34.4	1,236
5	Design of Single-Atom Co–N ₅ Catalytic Site: A Robust Electrocatalyst for CO ₂ Reduction with Nearly 100% CO Selectivity and Remarkable Stability. Journal of the American Chemical Society, 2018, 140, 4218-4221.	13.7	945
6	Defect Effects on TiO ₂ Nanosheets: Stabilizing Single Atomic Site Au and Promoting Catalytic Properties. Advanced Materials, 2018, 30, 1705369.	21.0	751
7	Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nature Nanotechnology, 2018, 13, 856-861.	31.5	741
8	Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nature Communications, 2018, 9, 5422.	12.8	696
9	Tuning the Coordination Environment in Single-Atom Catalysts to Achieve Highly Efficient Oxygen Reduction Reactions. Journal of the American Chemical Society, 2019, 141, 20118-20126.	13.7	683
10	Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chemical Society Reviews, 2020, 49, 2215-2264.	38.1	582
11	Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nature Chemistry, 2019, 11, 222-228.	13.6	571
12	Hollow N-Doped Carbon Spheres with Isolated Cobalt Single Atomic Sites: Superior Electrocatalysts for Oxygen Reduction. Journal of the American Chemical Society, 2017, 139, 17269-17272.	13.7	556
13	Size Dependence of Structural Metastability in Semiconductor Nanocrystals. Science, 1997, 276, 398-401.	12.6	545
14	Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction. Advanced Materials, 2018, 30, e1800588.	21.0	511
15	Bismuth Single Atoms Resulting from Transformation of Metal–Organic Frameworks and Their Use as Electrocatalysts for CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 16569-16573.	13.7	501
16	Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nature Chemistry, 2020, 12, 717-724.	13.6	485
17	MXene (Ti ₃ C ₂) Vacancy-Confined Single-Atom Catalyst for Efficient Functionalization of CO ₂ . Journal of the American Chemical Society, 2019, 141, 4086-4093.	13.7	479
18	A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N ₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie - International Edition, 2018, 57, 8614-8618.	13.8	455

#	Article	IF	CITATIONS
19	Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nature Chemistry, 2020, 12, 764-772.	13.6	452
20	Rational Design of Single Molybdenum Atoms Anchored on Nâ€Doped Carbon for Effective Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 16086-16090.	13.8	431
21	Single Tungsten Atoms Supported on MOFâ€Derived Nâ€Doped Carbon for Robust Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, e1800396.	21.0	427
22	Electronic structure and d-band center control engineering over M-doped CoP (M = Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy, 2019, 56, 411-419.	16.0	421
23	Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nature Nanotechnology, 2020, 15, 390-397.	31.5	420
24	Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10629-10634.	7.1	359
25	Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy and Environmental Science, 2018, 11, 2348-2352.	30.8	336
26	Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nature Communications, 2019, 10, 4290.	12.8	326
27	Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12692-12697.	7.1	325
28	A Versatile Bottomâ€up Assembly Approach to Colloidal Spheres from Nanocrystals. Angewandte Chemie - International Edition, 2007, 46, 6650-6653.	13.8	310
29	Constructing NiCo/Fe ₃ O ₄ Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions. Journal of the American Chemical Society, 2018, 140, 15336-15341.	13.7	310
30	High-Concentration Single Atomic Pt Sites on Hollow CuSx for Selective O2 Reduction to H2O2 in Acid Solution. CheM, 2019, 5, 2099-2110.	11.7	279
31	Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nature Communications, 2018, 9, 2353.	12.8	278
32	Construction of CoP/NiCoP Nanotadpoles Heterojunction Interface for Wide pH Hydrogen Evolution Electrocatalysis and Supercapacitor. Advanced Energy Materials, 2019, 9, 1901213.	19.5	275
33	A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C–H bonds in toluene. Nature Catalysis, 2018, 1, 704-710.	34.4	273
34	A Polymer Encapsulation Strategy to Synthesize Porous Nitrogenâ€Doped Carbonâ€Nanosphereâ€Supported Metal Isolatedâ€Singleâ€Atomicâ€Site Catalysts. Advanced Materials, 2018, 30, e1706508.	21.0	266
35	Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nature Communications, 2018, 9, 4958.	12.8	264
36	Synergistically Interactive Pyridinicâ€N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. Angewandte Chemie - International Edition, 2020, 59, 8982-8990.	13.8	263

#	Article	IF	CITATIONS
37	Confined Pyrolysis within Metal–Organic Frameworks To Form Uniform Ru ₃ Clusters for Efficient Oxidation of Alcohols. Journal of the American Chemical Society, 2017, 139, 9795-9798.	13.7	258
38	Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nature Communications, 2018, 9, 1002.	12.8	255
39	Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nature Communications, 2019, 10, 4875.	12.8	253
40	Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nature Materials, 2016, 15, 1188-1194.	27.5	244
41	Functionalization of Hollow Nanomaterials for Catalytic Applications: Nanoreactor Construction. Advanced Materials, 2019, 31, e1800426.	21.0	239
42	Structural Regulation with Atomic-Level Precision: From Single-Atomic Site to Diatomic and Atomic Interface Catalysis. Matter, 2020, 2, 78-110.	10.0	221
43	Discovering Partially Charged Single-Atom Pt for Enhanced Anti-Markovnikov Alkene Hydrosilylation. Journal of the American Chemical Society, 2018, 140, 7407-7410.	13.7	218
44	Sophisticated Construction of Au Islands on Pt–Ni: An Ideal Trimetallic Nanoframe Catalyst. Journal of the American Chemical Society, 2014, 136, 11594-11597.	13.7	216
45	Evolution of Nanoporous Pt–Fe Alloy Nanowires by Dealloying and their Catalytic Property for Oxygen Reduction Reaction. Advanced Functional Materials, 2011, 21, 3357-3362.	14.9	211
46	A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nature Communications, 2018, 9, 3861.	12.8	210
47	Quantitative Study of Charge Carrier Dynamics in Well-Defined WO ₃ Nanowires and Nanosheets: Insight into the Crystal Facet Effect in Photocatalysis. Journal of the American Chemical Society, 2018, 140, 9078-9082.	13.7	209
48	Temperature-Controlled Selectivity of Hydrogenation and Hydrodeoxygenation in the Conversion of Biomass Molecule by the Ru ₁ /mpg-C ₃ N ₄ Catalyst. Journal of the American Chemical Society, 2018, 140, 11161-11164.	13.7	199
49	Atomic Structure of Pt ₃ Ni Nanoframe Electrocatalysts by <i>in Situ</i> X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2015, 137, 15817-15824.	13.7	197
50	Strain Engineering to Enhance the Electrooxidation Performance of Atomic-Layer Pt on Intermetallic Pt ₃ Ga. Journal of the American Chemical Society, 2018, 140, 2773-2776.	13.7	193
51	A General Strategy for Fabricating Isolated Single Metal Atomic Site Catalysts in Y Zeolite. Journal of the American Chemical Society, 2019, 141, 9305-9311.	13.7	191
52	Amorphous nickel boride membrane on a platinum–nickel alloy surface for enhanced oxygen reduction reaction. Nature Communications, 2016, 7, 12362.	12.8	190
53	Tandem Catalysis for CO ₂ Hydrogenation to C ₂ –C ₄ Hydrocarbons. Nano Letters, 2017, 17, 3798-3802.	9.1	183
54	Hierarchical trimetallic Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 287, 119953.	20.2	175

#	Article	IF	CITATIONS
55	Ordered Porous Nitrogenâ€Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of Nâ€Heterocycles. Angewandte Chemie - International Edition, 2018, 57, 11262-11266.	13.8	165
56	Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy and Environmental Science, 2021, 14, 6428-6440.	30.8	164
57	Atomically Dispersed Ruthenium Species Inside Metal–Organic Frameworks: Combining the High Activity of Atomic Sites and the Molecular Sieving Effect of MOFs. Angewandte Chemie - International Edition, 2019, 58, 4271-4275.	13.8	162
58	Cobalt Single Atom Incorporated in Ruthenium Oxide Sphere: A Robust Bifunctional Electrocatalyst for HER and OER. Angewandte Chemie - International Edition, 2022, 61, .	13.8	162
59	Solvothermal synthesis of lithium iron phosphate nanoplates. Journal of Materials Chemistry, 2011, 21, 9994.	6.7	148
60	MOFâ€Confined Subâ€⊋ nm Atomically Ordered Intermetallic PdZn Nanoparticles as Highâ€Performance Catalysts for Selective Hydrogenation of Acetylene. Advanced Materials, 2018, 30, e1801878.	21.0	133
61	Constructing FeN4/graphitic nitrogen atomic interface for high-efficiency electrochemical CO2 reduction over a broad potential window. CheM, 2021, 7, 1297-1307.	11.7	133
62	One-Pot Pyrolysis to N-Doped Graphene with High-Density Pt Single Atomic Sites as Heterogeneous Catalyst for Alkene Hydrosilylation. ACS Catalysis, 2018, 8, 10004-10011.	11.2	121
63	Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nature Communications, 2019, 10, 3787.	12.8	119
64	Fe ₁ N ₄ –O ₁ site with axial Fe–O coordination for highly selective CO ₂ reduction over a wide potential range. Energy and Environmental Science, 2021, 14, 3430-3437.	30.8	119
65	Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Research, 2018, 11, 6260-6269.	10.4	118
66	One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Research, 2016, 9, 2026-2033.	10.4	117
67	Atomically dispersed Ni–Ru–P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy, 2021, 80, 105467.	16.0	114
68	Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Research, 2021, 14, 3482-3488.	10.4	113
69	Singleâ€Site Au ^I Catalyst for Silane Oxidation with Water. Advanced Materials, 2018, 30, 1704720.	21.0	112
70	Scaleâ€Up Biomass Pathway to Cobalt Singleâ€5ite Catalysts Anchored on Nâ€Doped Porous Carbon Nanobelt with Ultrahigh Surface Area. Advanced Functional Materials, 2018, 28, 1802167.	14.9	112
71	Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chemical Science, 2020, 11, 786-790.	7.4	110
72	Systematic Synthesis of Lanthanide Phosphate Nanocrystals. Chemistry - A European Journal, 2007, 13, 7708-7714.	3.3	109

#	Article	IF	CITATIONS
73	Monoclinic Tungsten Oxide with {100} Facet Orientation and Tuned Electronic Band Structure for Enhanced Photocatalytic Oxidations. ACS Applied Materials & Interfaces, 2016, 8, 10367-10374.	8.0	106
74	Cobalt Single Atom Incorporated in Ruthenium Oxide Sphere: A Robust Bifunctional Electrocatalyst for HER and OER. Angewandte Chemie, 2022, 134, .	2.0	105
75	Mesoporous Multicomponent Nanocomposite Colloidal Spheres: Ideal Highâ€∓emperature Stable Model Catalysts. Angewandte Chemie - International Edition, 2011, 50, 3725-3729.	13.8	101
76	Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Research, 2019, 12, 1625-1630.	10.4	96
77	Engineering Lattice Disorder on a Photocatalyst: Photochromic BiOBr Nanosheets Enhance Activation of Aromatic C–H Bonds via Water Oxidation. Journal of the American Chemical Society, 2022, 144, 3386-3397.	13.7	96
78	Interfacial effects in supported catalysts for electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 23432-23450.	10.3	94
79	Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium Catalysts. Angewandte Chemie - International Edition, 2018, 57, 4642-4646.	13.8	93
80	Construction of N, P Coâ€Đoped Carbon Frames Anchored with Fe Single Atoms and Fe ₂ P Nanoparticles as a Robust Coupling Catalyst for Electrocatalytic Oxygen Reduction. Advanced Materials, 2022, 34, .	21.0	93
81	Tuning Polarity of Cu-O Bond in Heterogeneous Cu Catalyst to Promote Additive-free Hydroboration of Alkynes. CheM, 2020, 6, 725-737.	11.7	87
82	Graphdiyne/Graphene Heterostructure: A Universal 2D Scaffold Anchoring Monodispersed Transition-Metal Phthalocyanines for Selective and Durable CO ₂ Electroreduction. Journal of the American Chemical Society, 2021, 143, 8679-8688.	13.7	87
83	Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production. Science Advances, 2020, 6, eaaz8447.	10.3	83
84	Insights into the Mechanism of Tandem Alkene Hydroformylation over a Nanostructured Catalyst with Multiple Interfaces. Journal of the American Chemical Society, 2016, 138, 11568-11574.	13.7	82
85	Transitionâ€Metal Phosphate Colloidal Spheres. Angewandte Chemie - International Edition, 2009, 48, 4816-4819.	13.8	79
86	Distinct Crystalâ€Facetâ€Dependent Behaviors for Singleâ€Atom Palladiumâ€On eria Catalysts: Enhanced Stabilization and Catalytic Properties. Advanced Materials, 2022, 34, e2107721.	21.0	78
87	Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Science China Materials, 2020, 63, 921-948.	6.3	76
88	Single-Atom Au ^I –N ₃ Site for Acetylene Hydrochlorination Reaction. ACS Catalysis, 2020, 10, 1865-1870.	11.2	76
89	Isolated Iron Single-Atomic Site-Catalyzed Chemoselective Transfer Hydrogenation of Nitroarenes to Arylamines. ACS Applied Materials & Interfaces, 2019, 11, 33819-33824.	8.0	74
90	lr–Cu nanoframes: one-pot synthesis and efficient electrocatalysts for oxygen evolution reaction. Chemical Communications, 2016, 52, 3793-3796.	4.1	73

#	Article	IF	CITATIONS
91	Dual Role of Pyridinic-N Doping in Carbon-Coated Ni Nanoparticles for Highly Efficient Electrochemical CO ₂ Reduction to CO over a Wide Potential Range. ACS Catalysis, 2022, 12, 1364-1374.	11.2	73
92	Toward Bifunctional Overall Water Splitting Electrocatalyst: General Preparation of Transition Metal Phosphide Nanoparticles Decorated N-Doped Porous Carbon Spheres. ACS Applied Materials & Interfaces, 2018, 10, 44201-44208.	8.0	71
93	Interface Engineering of Partially Phosphidated Co@Co–P@NPCNTs for Highly Enhanced Electrochemical Overall Water Splitting. Small, 2020, 16, e2002124.	10.0	71
94	Porous organic cage stabilised palladium nanoparticles: efficient heterogeneous catalysts for carbonylation reaction of aryl halides. Chemical Communications, 2018, 54, 2796-2799.	4.1	70
95	Tuning strain effect and surface composition in PdAu hollow nanospheres as highly efficient ORR electrocatalysts and SERS substrates. Applied Catalysis B: Environmental, 2020, 262, 118298.	20.2	70
96	Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Research, 2020, 13, 947-951.	10.4	65
97	Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. Nano Research, 2016, 9, 435-441.	10.4	64
98	PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Research, 2019, 12, 2866-2871.	10.4	61
99	Nitrogen-coordinated cobalt nanocrystals for oxidative dehydrogenation and hydrogenation of N-heterocycles. Chemical Science, 2019, 10, 5345-5352.	7.4	60
100	Two-Dimensional SnO ₂ Nanosheets for Efficient Carbon Dioxide Electroreduction to Formate. ACS Sustainable Chemistry and Engineering, 2020, 8, 4975-4982.	6.7	59
101	Self-assembly of uniform hexagonal yttrium phosphate nanocrystals. Chemical Communications, 2006, , 3522.	4.1	57
102	Ultrathin Pt–Zn Nanowires: High-Performance Catalysts for Electrooxidation of Methanol and Formic Acid. ACS Sustainable Chemistry and Engineering, 2018, 6, 77-81.	6.7	52
103	A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N ₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie, 2018, 130, 8750-8754.	2.0	51
104	Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the "size shackles― Nano Research, 2018, 11, 4774-4785.	10.4	49
105	50 ppm of Pd dispersed on Ni(OH)2 nanosheets catalyzing semi-hydrogenation of acetylene with high activity and selectivity. Nano Research, 2018, 11, 905-912.	10.4	48
106	Implication of iron nitride species to enhance the catalytic activity and stability of carbon nanotubes supported Fe catalysts for carbon-free hydrogen production <i>via</i> low-temperature ammonia decomposition. Catalysis Science and Technology, 2018, 8, 907-915.	4.1	46
107	Porous Î ³ -Fe2O3 nanoparticle decorated with atomically dispersed platinum: Study on atomic site structural change and gas sensor activity evolution. Nano Research, 2021, 14, 1435-1442.	10.4	46
108	Free-standing palladium-nickel alloy wavy nanosheets. Nano Research, 2016, 9, 2244-2250.	10.4	45

#	Article	IF	CITATIONS
109	Synergistically Interactive Pyridinicâ€N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution. Angewandte Chemie, 2020, 132, 9067-9075.	2.0	45
110	Anion-exchange-mediated internal electric field for boosting photogenerated carrier separation and utilization. Nature Communications, 2021, 12, 4952.	12.8	45
111	Partial positively charged Pt in Pt/MgAl2O4 for enhanced dehydrogenation activity. Applied Catalysis B: Environmental, 2021, 288, 119996.	20.2	44
112	Oxygen Vacancy-Rich RuO ₂ –Co ₃ O ₄ Nanohybrids as Improved Electrocatalysts for Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2021, 13, 39239-39247.	8.0	44
113	Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites and their excellent performance as electrodes. Science China Materials, 2015, 58, 944-952.	6.3	43
114	Preparation and electrochemical characterization of ultrathin WO3â^'x /C nanosheets as anode materials in lithium ion batteries. Nano Research, 2017, 10, 1903-1911.	10.4	43
115	Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation. Science China Materials, 2021, 64, 2454-2466.	6.3	43
116	Synthesis of PtCo3 polyhedral nanoparticles and evolution to Pt3Co nanoframes. Surface Science, 2016, 648, 328-332.	1.9	42
117	Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Science China Materials, 2018, 61, 1527-1535.	6.3	42
118	NiPt Nanoparticles Anchored onto Hierarchical Nanoporous N-Doped Carbon as an Efficient Catalyst for Hydrogen Generation from Hydrazine Monohydrate. ACS Applied Materials & Interfaces, 2020, 12, 18617-18624.	8.0	38
119	Size structure–catalytic performance correlation of supported Ni/MCF-17 catalysts for CO _x -free hydrogen production. Chemical Communications, 2018, 54, 6364-6367.	4.1	36
120	Ultra-thin Cu ₂ S nanosheets: effective cocatalysts for photocatalytic hydrogen production. Chemical Communications, 2015, 51, 13305-13308.	4.1	35
121	Pd-dispersed CuS hetero-nanoplates for selective hydrogenation of phenylacetylene. Nano Research, 2016, 9, 1209-1219.	10.4	35
122	One-pot synthesis of monodisperse CeO2 nanocrystals and superlattices. Chemical Communications, 2008, , 3741.	4.1	34
123	Super-hydrophobic yolk–shell nanostructure with enhanced catalytic performance in the reduction of hydrophobic nitroaromatic compounds. Chemical Communications, 2013, 49, 9591.	4.1	33
124	Engineering a light-weight, thin and dual-functional interlayer as "polysulfides sieve―capable of synergistic adsorption for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2020, 383, 123163.	12.7	33
125	Modifications of heterogeneous photocatalysts for hydrocarbon C–H bond activation and selective conversion. Chemical Communications, 2020, 56, 13918-13932.	4.1	32
126	Gold nanoparticles confined in the interconnected carbon foams with high temperature stability. Chemical Communications, 2012, 48, 10404.	4.1	31

#	Article	IF	CITATIONS
127	Topological self-template directed synthesis of multi-shelled intermetallic Ni ₃ Ga hollow microspheres for the selective hydrogenation of alkyne. Chemical Science, 2019, 10, 614-619.	7.4	31
128	An efficientfficient, controllable and facile two-step synthesis strategy: Fe3O4@RGO composites with various Fe3O4 nanoparticles and their supercapacitance properties. Nano Research, 2017, 10, 3303-3313.	10.4	29
129	Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium Catalysts. Angewandte Chemie, 2018, 130, 4732-4736.	2.0	29
130	Doping Ruthenium into Metal Matrix for Promoted pHâ€Universal Hydrogen Evolution. Advanced Science, 2022, 9, e2200010.	11.2	29
131	Regulating the electronic structure of NiFe layered double hydroxide/reduced graphene oxide by Mn incorporation for high-efficiency oxygen evolution reaction. Science China Materials, 2021, 64, 2729-2738.	6.3	28
132	Atomically Dispersed CoN ₃ C ₁ â€TeN ₁ C ₃ Diatomic Sites Anchored in Nâ€Doped Carbon as Efficient Bifunctional Catalyst for Synergistic Electrocatalytic Hydrogen Evolution and Oxygen Reduction. Small, 2022, 18, .	10.0	28
133	Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting. Nano Research, 2020, 13, 3068-3074.	10.4	27
134	Synergistic effect of bimetallic PdAu nanocrystals on oxidative alkyne homocoupling. Chemical Communications, 2018, 54, 13155-13158.	4.1	26
135	Ordered two-dimensional porous Co3O4 nanosheets as electrocatalysts for rechargeable Li-O2 batteries. Nano Research, 2019, 12, 299-302.	10.4	26
136	Atomically Dispersed Ruthenium Species Inside Metal–Organic Frameworks: Combining the High Activity of Atomic Sites and the Molecular Sieving Effect of MOFs. Angewandte Chemie, 2019, 131, 4315-4319.	2.0	25
137	Ordered Porous Nitrogenâ€Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of Nâ€Heterocycles. Angewandte Chemie, 2018, 130, 11432-11436.	2.0	24
138	Seed-mediated synthesis of hexameric octahedral PtPdCu nanocrystals with high electrocatalytic performance. Chemical Communications, 2015, 51, 15406-15409.	4.1	23
139	Nano PdAu Bimetallic Alloy as an Effective Catalyst for the Buchwald–Hartwig Reaction. Chemistry - an Asian Journal, 2016, 11, 351-355.	3.3	23
140	The design of hollow PdO–Co ₃ O ₄ nano-dodecahedrons with moderate catalytic activity for Li–O ₂ batteries. Chemical Communications, 2019, 55, 12683-12686.	4.1	23
141	Atomic iron on mesoporous N-doped carbon to achieve dehydrogenation reaction at room temperature. Nano Research, 2020, 13, 3075-3081.	10.4	23
142	Isolated Singleâ€Atom Ruthenium Anchored on Beta Zeolite as an Efficient Heterogeneous Catalyst for Styrene Epoxidation. ChemNanoMat, 2020, 6, 1647-1651.	2.8	22
143	Manganese vacancy-confined single-atom Ag in cryptomelane nanorods for efficient Wacker oxidation of styrene derivatives. Chemical Science, 2021, 12, 6099-6106.	7.4	22
144	Interfacial polarization in ultra-small Co3S4â^'MoS2 heterostructure for efficient electrocatalytic hydrogen evolution reaction. Applied Materials Today, 2022, 26, 101311.	4.3	21

#	Article	IF	CITATIONS
145	Facile synthesis of CoNi _x nanoparticles embedded in nitrogen–carbon frameworks for highly efficient electrocatalytic oxygen evolution. Chemical Communications, 2017, 53, 12177-12180.	4.1	20
146	The facile synthesis of core–shell PtCu nanoparticles with superior electrocatalytic activity and stability in the hydrogen evolution reaction. RSC Advances, 2021, 11, 26326-26335.	3.6	20
147	Au/CuSiO3 nanotubes: High-performance robust catalysts for selective oxidation of ethanol to acetaldehyde. Nano Research, 2016, 9, 2681-2686.	10.4	19
148	MOF derived high-density atomic platinum heterogeneous catalyst for C–H bond activation. Materials Chemistry Frontiers, 2020, 4, 1158-1163.	5.9	19
149	Selective hydrogenation of N-heterocyclic compounds over rhodium-copper bimetallic nanocrystals under ambient conditions. Nano Research, 2019, 12, 1631-1634.	10.4	18
150	Dopamine polymer derived isolated single-atom site metals/N-doped porous carbon for benzene oxidation. Chemical Communications, 2020, 56, 8916-8919.	4.1	18
151	Atomically dispersed Ni anchored on polymer-derived mesh-like N-doped carbon nanofibers as an efficient CO2 electrocatalytic reduction catalyst. Nano Research, 2022, 15, 3959-3963.	10.4	18
152	A Dendrite-Resistant Zinc-Air Battery. IScience, 2020, 23, 101169.	4.1	17
153	Factors Affecting the Catalytic Performance of Nanoâ€catalysts. Chinese Journal of Chemistry, 2022, 40, 515-523.	4.9	16
154	Interface-induced formation of onion-like alloy nanocrystals by defects engineering. Nano Research, 2016, 9, 584-592.	10.4	15
155	Preparation of freestanding palladium nanosheets modified with gold nanoparticles at edges. Nano Research, 2018, 11, 4142-4148.	10.4	15
156	Supported Ni@Ni ₂ P Core–Shell Nanotube Arrays on Ni Foam for Hydrazine Electrooxidation. ACS Sustainable Chemistry and Engineering, 2021, 9, 4564-4570.	6.7	14
157	Hierarchical Ni/Ni(OH) ₂ -NiCo ₂ O ₄ Supported on Ni Foam as Efficient Bifunctional Electrocatalysts for Water Splitting. Journal of Physical Chemistry C, 2022, 126, 5493-5501.	3.1	14
158	PtAl truncated octahedron nanocrystals for improved formic acid electrooxidation. Chemical Communications, 2018, 54, 3951-3954.	4.1	12
159	Synthesis of palladium and palladium sulfide nanocrystals via thermolysis of a Pd–thiolate cluster. Science China Materials, 2015, 58, 936-943.	6.3	11
160	Role of percentage of {0 0 1} crystal facets in TiO2 supports toward the water–gas shift reaction over Au-TiO2 catalysts. Chemical Engineering Journal, 2022, 446, 137010.	12.7	11
161	Reaction: Open Up the Era of Atomically Precise Catalysis. CheM, 2019, 5, 2737-2739.	11.7	10
162	Optimized Selfâ€Templating Synthesis Method for Highly Crystalline Hollow Cu ₂ 0 Nanoboxes. Small Methods, 2020, 4, 2000521.	8.6	10

#	Article	IF	CITATIONS
163	Synergetic effect of nitrogen-doped carbon catalysts for high-efficiency electrochemical CO2 reduction. Chinese Journal of Catalysis, 2022, 43, 1697-1702.	14.0	10
164	Rational design and precise manipulation of nano-catalysts. Chinese Journal of Catalysis, 2022, 43, 898-912.	14.0	7
165	Combination of Fe(II)-induced oxygen deficiency and metal doping strategy for construction of high efficiency water oxidation electrocatalysts under industrial-scale current density. Chemical Engineering Journal, 2022, 435, 135048.	12.7	6
166	Large-scale synthesis of nanocrystals of barium titanate and other titanates through solution-phase processes. Materials Research Bulletin, 2010, 45, 1762-1767.	5.2	4
167	A general strategy to prepare atomically dispersed biomimetic catalysts based on host–guest chemistry. Chemical Communications, 2021, 57, 1895-1898.	4.1	2
168	Self-assembled mesostructured Co0.5Fe2.5O4 nanoparticle superstructures for highly efficient oxygen evolution. Journal of Colloid and Interface Science, 2021, 593, 125-132.	9.4	2