
## Xianwei Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4317887/publications.pdf Version: 2024-02-01



XIANNAFLLI

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Copper-Catalyzed Aerobic C(sp <sup>2</sup> )–H Functionalization for C–N Bond Formation: Synthesis of Pyrazoles and Indazoles. Journal of Organic Chemistry, 2013, 78, 3636-3646.                                   | 3.2  | 210       |
| 2  | Copperâ€Catalyzed Aerobic Oxidative NS Bond Functionalization for CS Bond Formation: Regio―and<br>Stereoselective Synthesis of Sulfones and Thioethers. Chemistry - A European Journal, 2014, 20,<br>7911-7915.   | 3.3  | 210       |
| 3  | Conversion of Pyridine to Imidazo[1,2- <i>a</i> ]pyridines by Copper-Catalyzed Aerobic Dehydrogenative<br>Cyclization with Oxime Esters. Organic Letters, 2013, 15, 6254-6257.                                      | 4.6  | 166       |
| 4  | Copper-catalyzed aerobic oxidation and cleavage/formation of C–S bond: a novel synthesis of aryl methyl sulfones from aryl halides and DMSO. Chemical Communications, 2012, 48, 7513.                               | 4.1  | 110       |
| 5  | Copper-catalyzed oxidative [2 + 2 + 1] cycloaddition: regioselective synthesis of 1,3-oxazoles from internal alkynes and nitriles. Chemical Science, 2012, 3, 3463.                                                 | 7.4  | 109       |
| 6  | Facile synthesis of benzofurans via copper-catalyzed aerobic oxidative cyclization of phenols and alkynes. Chemical Communications, 2013, 49, 6611.                                                                 | 4.1  | 97        |
| 7  | Iron-Catalyzed Synthesis of 2 <i>H</i> -Imidazoles from Oxime Acetates and Vinyl Azides under Redox-Neutral Conditions. Organic Letters, 2017, 19, 1370-1373.                                                       | 4.6  | 84        |
| 8  | Copperâ€Catalyzed Aerobic Oxidative Transformation of Ketoneâ€Derived <i>N</i> â€Tosyl Hydrazones: An<br>Entry to Alkynes. Angewandte Chemie - International Edition, 2014, 53, 14485-14489.                        | 13.8 | 74        |
| 9  | Synthesis of enaminones via copper-catalyzed decarboxylative coupling reaction under redox-neutral conditions. Chemical Communications, 2017, 53, 3228-3231.                                                        | 4.1  | 73        |
| 10 | Palladium-Catalyzed Oxidative Coupling of Aromatic Primary Amines and Alkenes under Molecular<br>Oxygen: Stereoselective Assembly of ( <i>Z</i> )-Enamines. Journal of Organic Chemistry, 2013, 78,<br>11155-11162. | 3.2  | 70        |
| 11 | Highly regioselective palladium-catalysed oxidative allylic C–H carbonylation of alkenes. Chemical Communications, 2011, 47, 12224.                                                                                 | 4.1  | 66        |
| 12 | Palladium-Catalyzed C–H Functionalization of Aromatic Oximes: A Strategy for the Synthesis of<br>Isoquinolines. Journal of Organic Chemistry, 2016, 81, 1401-1409.                                                  | 3.2  | 64        |
| 13 | Rh-Catalyzed C–H Amination/Annulation of Acrylic Acids and Anthranils by Using â^'COOH as a<br>Deciduous Directing Group: An Access to Diverse Quinolines. Organic Letters, 2020, 22, 2600-2605.                    | 4.6  | 59        |
| 14 | Acetoxypalladation of unactivated alkynes and capture with alkenes to give 1-acetoxy-1,3-dienes taking dioxygen as terminal oxidant. Chemical Communications, 2011, 47, 1003-1005.                                  | 4.1  | 52        |
| 15 | Palladium-Catalyzed Sequential C–N/C–O Bond Formations: Synthesis of Oxazole Derivatives from<br>Amides and Ketones. Organic Letters, 2014, 16, 5906-5909.                                                          | 4.6  | 52        |
| 16 | Palladium-Catalyzed Oxidative Carbonylation for the Synthesis of Polycyclic Aromatic Hydrocarbons<br>(PAHs). Journal of Organic Chemistry, 2014, 79, 11246-11253.                                                   | 3.2  | 50        |
| 17 | A phosphoryl radical-initiated Atherton–Todd-type reaction under open air. Chemical<br>Communications, 2020, 56, 1357-1360.                                                                                         | 4.1  | 48        |
| 18 | Regioselective C–H Bond Alkynylation of Carbonyl Compounds through Ir(III) Catalysis. Journal of<br>Organic Chemistry, 2017, 82, 13003-13011.                                                                       | 3.2  | 47        |

Xianwei Li

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Recent Development on Cp*Ir(III)â€Catalyzed Câ^'H Bond Functionalization. ChemCatChem, 2020, 12,<br>2358-2384.                                                                                                                 | 3.7  | 47        |
| 20 | Highly Chemoselective Palladium-Catalyzed Cross-Trimerization between Alkyne and Alkenes Leading<br>to 1,3,5-Trienes or 1,2,4,5-Tetrasubstituted Benzenes with Dioxygen. Journal of Organic Chemistry, 2010,<br>75, 8279-8282. | 3.2  | 44        |
| 21 | Copper-catalyzed cyanothiolation to incorporate a sulfur-substituted quaternary carbon center.<br>Chemical Science, 2017, 8, 7047-7051.                                                                                        | 7.4  | 44        |
| 22 | Two new quinoline-based regenerable fluorescent probes with AIE characteristics for selective recognition of Cu <sup>2+</sup> in aqueous solution and test strips. Analyst, The, 2018, 143, 4870-4886.                         | 3.5  | 43        |
| 23 | Cross-dehydrogenative alkynylation of sulfonamides and amides with terminal alkynes <i>via</i> lr( <scp>iii</scp> ) catalysis. Organic Chemistry Frontiers, 2019, 6, 284-289.                                                  | 4.5  | 43        |
| 24 | Recent Achievements in the Rhodiumâ€Catalyzed Concise Construction of Medium Nâ€Heterocycles,<br>Azepines and Azocines. Advanced Synthesis and Catalysis, 2020, 362, 5576-5600.                                                | 4.3  | 42        |
| 25 | Copper-Mediated [3 + 2] Oxidative Cyclization Reaction of <i>N</i> -Tosylhydrazones and $\hat{l}^2$ -Ketoesters:<br>Synthesis of 2,3,5-Trisubstituted Furans. Journal of Organic Chemistry, 2016, 81, 5014-5020.               | 3.2  | 41        |
| 26 | Palladium-Catalyzed Carbonation–Diketonization of Terminal Aromatic Alkenes via Carbon–Nitrogen<br>Bond Cleavage for the Synthesis of 1,2-Diketones. Journal of Organic Chemistry, 2011, 76, 6958-6961.                        | 3.2  | 40        |
| 27 | NiH-Catalyzed Hydroamination/Cyclization Cascade: Rapid Access to Quinolines. ACS Catalysis, 2021, 11, 7772-7779.                                                                                                              | 11.2 | 37        |
| 28 | Facile synthesis of dibranched conjugated dienes via palladium-catalyzed oxidative coupling of<br>N-tosylhydrazones. Chemical Communications, 2013, 49, 9218.                                                                  | 4.1  | 35        |
| 29 | Copper-Catalyzed Cyanation of <i>N</i> -Tosylhydrazones with Thiocyanate Salt as the "CN―Source.<br>Journal of Organic Chemistry, 2017, 82, 7621-7627.                                                                         | 3.2  | 34        |
| 30 | Sequential C–H and C–C Bond Cleavage: Divergent Constructions of Fused <i>N</i> -Heterocycles via<br>Tunable Cascade. ACS Catalysis, 2019, 9, 8749-8756.                                                                       | 11.2 | 33        |
| 31 | Electrochemical synthesis of amides: direct transformation of methyl ketones with formamides.<br>Tetrahedron Letters, 2013, 54, 7156-7159.                                                                                     | 1.4  | 32        |
| 32 | An aerobic [2 + 2 + 2] Cyclization via Chloropalladation: From 1,6-Diynes and Acrylates to Substituted Aromatic Carbocycles. Journal of Organic Chemistry, 2011, 76, 4759-4763.                                                | 3.2  | 30        |
| 33 | Carbonylation Access to Phthalimides Using Self-Sufficient Directing Group and Nucleophile. Journal of Organic Chemistry, 2018, 83, 104-112.                                                                                   | 3.2  | 30        |
| 34 | Palladium-Catalyzed Oxidative O–H/N–H Carbonylation of Hydrazides: Access to Substituted<br>1,3,4-Oxadiazole-2(3 <i>H</i> )-ones. Journal of Organic Chemistry, 2015, 80, 5713-5718.                                           | 3.2  | 24        |
| 35 | Copper-catalyzed oxidative multicomponent reaction: synthesis of imidazo fused heterocycles with molecular oxygen. Organic and Biomolecular Chemistry, 2018, 16, 7143-7151.                                                    | 2.8  | 23        |
| 36 | Weak coordinated nitrogen functionality enabled regioselective C–H alkynylation via<br>Pd(ii)/mono-N-protected amino acid catalysis. Chemical Communications, 2020, 56, 11255-11258.                                           | 4.1  | 23        |

Xianwei Li

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | TBHP/NH <sub>4</sub> I-Mediated Direct N–H Phosphorylation of Imines and Imidates. Journal of Organic Chemistry, 2019, 84, 14949-14956.                                                                                                                                     | 3.2 | 18        |
| 38 | Ironâ€Catalyzed and Airâ€Mediated C( <i>sp</i> <sup>3</sup> )â^'H Phosphorylation of 1,3â€Dicarbonyl<br>Compounds Involving Câ^'C Bond Cleavage. Advanced Synthesis and Catalysis, 2020, 362, 5783-5787.                                                                    | 4.3 | 18        |
| 39 | Intermolecular Multiple Dehydrogenative Crossâ€Couplings of Ketones with Boronic Acids and Amines via Copper Catalysis. Advanced Synthesis and Catalysis, 2019, 361, 3886-3892.                                                                                             | 4.3 | 17        |
| 40 | Chlorine-free copper-catalyzed oxidative synthesis of 1,3,4-oxadiazoles with molecular oxygen as the sole oxidant. Pure and Applied Chemistry, 2011, 84, 553-559.                                                                                                           | 1.9 | 16        |
| 41 | Direct Synthesis of <i>ortho</i> -Halogenated Arylphosphonates via a Three-Component Reaction<br>Involving Arynes. Journal of Organic Chemistry, 2021, 86, 7010-7018.                                                                                                       | 3.2 | 15        |
| 42 | Nickel-Catalyzed Hydroamination of Olefins with Anthranils. Journal of Organic Chemistry, 2021, 86, 12107-12118.                                                                                                                                                            | 3.2 | 13        |
| 43 | C S and C N bond formation via Mn-promoted oxidative cascade reaction: Synthesis of C3-sulfenated indoles. Tetrahedron, 2017, 73, 6138-6145.                                                                                                                                | 1.9 | 12        |
| 44 | Regioâ€Divergent C—H Alkynylation with Janus Directing Strategy via Ir( III ) Catalysis. Chinese Journal of<br>Chemistry, 2020, 38, 929-934.                                                                                                                                | 4.9 | 11        |
| 45 | Modular construction of functionalized anilines <i>via</i> switchable C–H and <i>N</i> -alkylations of traceless <i>N</i> -nitroso anilines with olefins. Organic Chemistry Frontiers, 2022, 9, 2746-2752.                                                                  | 4.5 | 10        |
| 46 | Stimuli-Responsive Aggregation-Induced Delayed Fluorescence Emitters Featuring the Asymmetric D–A<br>Structure with a Novel Diarylketone Acceptor Toward Efficient OLEDs with Negligible Efficiency<br>Roll-Off. ACS Applied Materials & Interfaces, 2020, 12, 29528-29539. | 8.0 | 8         |
| 47 | Sequential C–H activation enabled expedient delivery of polyfunctional arenes. Chemical Communications, 2021, 57, 8075-8078.                                                                                                                                                | 4.1 | 8         |
| 48 | Practical synthesis of 3-aryl anthranils <i>via</i> an electrophilic aromatic substitution strategy.<br>Chemical Science, 2022, 13, 2105-2114.                                                                                                                              | 7.4 | 8         |
| 49 | Ligand-accelerated site-selective Csp <sup>2</sup> –H and Csp <sup>3</sup> –H alkynylations of alcohols <i>via</i> Pd( <scp>ii</scp> ) catalysis. Organic Chemistry Frontiers, 2021, 8, 6484-6490.                                                                          | 4.5 | 5         |
| 50 | A three-component reaction of arynes, sodium sulfinates, and aldehydes toward 2-sulfonyl benzyl<br>alcohol derivatives. Organic and Biomolecular Chemistry, 2021, 19, 7066-7073.                                                                                            | 2.8 | 3         |