Georg Manolikakes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4317348/publications.pdf

Version: 2024-02-01

126907 144013 3,479 79 33 57 citations h-index g-index papers 116 116 116 2564 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Direct C–H-sulfonylation of 6-membered nitrogen-heteroaromatics. , 2022, 1, 100003.		14
2	Streamlined Oneâ€Pot Synthesis of Nitro Fatty Acids. European Journal of Organic Chemistry, 2021, 2021, 2239-2252.	2.4	5
3	Enhancing the chemosensitivity of HepG2 cells towards cisplatin by organoselenium pseudopeptides. Bioorganic Chemistry, 2021, 109, 104713.	4.1	19
4	Synthesis of Nitroolefins via the Direct Nitration of Alkenes. SynOpen, 2021, 05, 229-231.	1.7	3
5	Recent Progress and Emerging Technologies towards a Sustainable Synthesis of Sulfones. ChemSusChem, 2021, 14, 4878-4902.	6.8	56
6	Palladium atalyzed Decarboxylative 1,2â€Addition of Carboxylic Acids to Glyoxylic Acid Esters. European Journal of Organic Chemistry, 2021, 2021, 6340-6346.	2.4	2
7	Oxyenamide als vielseitige Bausteine fýr eine hochgradig stereoselektive Eintopfâ€Synthese der 1,3â€Diaminoâ€2â€olâ€Einheit mit drei fortlaufenden Stereozentren. Angewandte Chemie, 2021, 133, 23859.	2.0	2
8	Oxyenamides as Versatile Building Blocks for a Highly Stereoselective Oneâ€Pot Synthesis of the 1,3â€Diaminoâ€2â€olâ€Scaffold Containing Three Continuous Stereocenters. Angewandte Chemie - International Edition, 2021, 60, 23667-23671.	13.8	5
9	Urea-functionalized organoselenium compounds as promising anti-HepG2 and apoptosis-inducing agents. Future Medicinal Chemistry, 2021, 13, 1655-1677.	2.3	19
10	Advances in photochemical and electrochemical incorporation of sulfur dioxide for the synthesis of value-added compounds. Chemical Communications, 2021, 57, 8236-8249.	4.1	56
11	Structural Modifications Yield Novel Insights Into the Intriguing Pharmacodynamic Potential of Anti-inflammatory Nitro-Fatty Acids. Frontiers in Pharmacology, 2021, 12, 715076.	3.5	5
12	The Emerging Therapeutic Potential of Nitro Fatty Acids and Other Michael Acceptor-Containing Drugs for the Treatment of Inflammation and Cancer. Frontiers in Pharmacology, 2020, 11, 1297.	3.5	26
13	Iron(III)-Mediated Oxysulfonylation of Enamides with Sodium and Lithium Sulfinates. Journal of Organic Chemistry, 2020, 85, 3617-3637.	3.2	21
14	Rapid Assembly of Molecular Complexity from Simple Enamides. Synlett, 2020, 31, 1027-1032.	1.8	12
15	Recent Advances in the Synthesis and Direct Application of Sulfinate Salts. European Journal of Organic Chemistry, 2020, 2020, 4664-4676.	2.4	65
16	Palladiumâ€Catalyzed Decarboxylative Threeâ€Component Synthesis of αâ€Arylglycines: Replacing Boronic with Carboxylic Acids in the Petasis Reaction. ChemCatChem, 2020, 12, 3463-3466.	3.7	7
17	An Enamideâ€Based Domino Reaction for a Highly Stereoselective Synthesis of Tetrahydropyrans. Angewandte Chemie - International Edition, 2019, 58, 13056-13059.	13.8	13
18	An Enamideâ€Based Domino Reaction for a Highly Stereoselective Synthesis of Tetrahydropyrans. Angewandte Chemie, 2019, 131, 13190-13193.	2.0	4

#	Article	IF	Citations
19	Catalyst-free direct synthesis of \hat{l}^2 -enaminones through reaction of benzohydrazonamides with cyclic 1,3-diketones: Access to exocyclic \hat{l}^2 -enaminones. Synthetic Communications, 2019, 49, 3161-3168.	2.1	6
20	Manganese(<scp>iii</scp>) acetate-mediated direct C(sp ²)â€"H-sulfonylation of enamides with sodium and lithium sulfinates. Organic and Biomolecular Chemistry, 2019, 17, 5538-5544.	2.8	23
21	Electron diffraction tomography and X-ray powder diffraction on photoredox catalyst PDI. CrystEngComm, 2019, 21, 2571-2575.	2.6	0
22	Nickelâ€Catalyzed Synthesis of Diaryl Sulfones from Aryl Halides and Sodium Sulfinates. European Journal of Organic Chemistry, 2018, 2018, 1208-1210.	2.4	41
23	Visible-Light Photoredox/Nickel Dual Catalysis for the Cross-Coupling of Sulfinic Acid Salts with Aryl lodides. Organic Letters, 2018, 20, 760-763.	4.6	75
24	Stereoselective One-Pot Synthesis of Dihydropyrimido[2,1- <i>a</i>]isoindole-6(2 <i>H</i>)-ones. Organic Letters, 2018, 20, 178-181.	4.6	14
25	Radicals and Sulfur Dioxide: A Versatile Combination for the Construction of Sulfonylâ€Containing Molecules. Chemistry - A European Journal, 2018, 24, 11852-11863.	3.3	217
26	Bi(OTf) ₃ -Catalyzed Diastereoselective One-Pot Synthesis of 1,3-Diamines with Three Continuous Stereogenic Centers. Journal of Organic Chemistry, 2018, 83, 12007-12022.	3.2	14
27	Visibleâ€Lightâ€Induced 3â€Component Synthesis of Sulfonylated Oxindoles by Fixation of Sulfur Dioxide. European Journal of Organic Chemistry, 2018, 2018, 5725-5734.	2.4	25
28	Cytoprotective and antioxidant properties of organic selenides for the myelin-forming cells, oligodendrocytes. Bioorganic Chemistry, 2018, 80, 43-56.	4.1	35
29	Sulfonamides as Amine Component in the Petasis-Borono Mannich Reaction: A Concise Synthesis of α-Aryl- and α-Alkenylglycine DerivativesÂ- Synthesis, 2018, 50, 3936-3946.	2.3	14
30	Frontispiece: Radicals and Sulfur Dioxide: A Versatile Combination for the Construction of Sulfonylâ€Containing Molecules. Chemistry - A European Journal, 2018, 24, .	3.3	0
31	Visible-light mediated 3-component synthesis of sulfonylated coumarins from sulfur dioxide. Green Chemistry, 2018, 20, 3059-3070.	9.0	89
32	Anti-inflammatory nitro-fatty acids suppress tumor growth by triggering mitochondrial dysfunction and activation of the intrinsic apoptotic pathway in colorectal cancer cells. Biochemical Pharmacology, 2018, 155, 48-60.	4.4	18
33	Recent Advances in the Synthesis of C–S Bonds via Metal-Catalyzed or -Mediated Functionalization of C–H Bonds. Advances in Organometallic Chemistry, 2018, 69, 135-207.	1.0	11
34	Modular Two-Step Approach for the Stereodivergent Synthesis of 1,3-Diamines with Three Continuous Stereocenters. Organic Letters, 2017, 19, 674-677.	4.6	18
35	Synthesis of sulfones via selective C–H-functionalization. Organic and Biomolecular Chemistry, 2017, 15, 1947-1955.	2.8	122
36	Visibleâ€Light Photoredoxâ€Catalyzed Aminosulfonylation of Diaryliodonium Salts with Sulfur Dioxide and Hydrazines. Advanced Synthesis and Catalysis, 2017, 359, 1308-1319.	4.3	118

#	Article	IF	CITATIONS
37	Manganese(III) Acetate Mediated C–H Sulfonylation of 1,4â€Dimethoxybenzenes with Sodium and Lithium Sulfinates. European Journal of Organic Chemistry, 2017, 2017, 4117-4120.	2.4	17
38	Copperâ€Catalyzed Remote <i>para</i> â€Câ^'H Functionalization of Anilines with Sodium and Lithium Sulfinates. Chemistry - A European Journal, 2017, 23, 96-100.	3.3	82
39	Michael acceptor containing drugs are a novel class of 5-lipoxygenase inhibitor targeting the surface cysteines C416 and C418. Biochemical Pharmacology, 2017, 125, 55-74.	4.4	18
40	Bismuth- and Iron-Catalyzed Three-Component Synthesis of \hat{l}_{\pm} -Amino Acid Derivatives: A Simple and Convenient Route to \hat{l}_{\pm} -Arylglycines. Synthesis, 2017, 49, 849-879.	2.3	4
41	Modular Regiospecific Synthesis of Nitrated Fatty Acids. Synthesis, 2017, 49, 615-636.	2.3	11
42	Wenn Löcher Bindungen stÇken: die Halogenbrücken. Nachrichten Aus Der Chemie, 2016, 64, 131-134.	0.0	3
43	Katalytische C-H-Aktivierungen. Nachrichten Aus Der Chemie, 2016, 64, 519-522.	0.0	0
44	Zwei-Photonen-Absorption auf Umwegen. Nachrichten Aus Der Chemie, 2016, 64, 851-854.	0.0	0
45	Palladium-Catalyzed Enantioselective Three-Component Synthesis of α-Arylglycines. Organic Letters, 2016, 18, 4116-4119.	4.6	39
46	Copperâ€Catalyzed Remote Câ^'H Functionalization of 8â€Aminoquinolines with Sodium and Lithium Sulfinates. Advanced Synthesis and Catalysis, 2016, 358, 2371-2378.	4.3	67
47	Totalsynthese von Strictamin. Nachrichten Aus Der Chemie, 2016, 64, 747-750.	0.0	1
48	Nickelkatalyse offenbart neue ReaktivitÃten. Nachrichten Aus Der Chemie, 2016, 64, 1060-1064.	0.0	0
49	Recent Advances in the Synthesis of Sulfones. Synthesis, 2016, 48, 1939-1973.	2.3	247
50	A Palladium-Catalyzed Three-Component Synthesis of Arylmethylsulfonamides. Synthesis, 2016, 48, 379-386.	2.3	7
51	Copperâ€Mediated Sulfonylation of Aryl C(<i>sp</i> ²)H Bonds with Sodium and Lithium Sulfinates. Advanced Synthesis and Catalysis, 2016, 358, 159-163.	4.3	48
52	3-Component synthesis of α-substituted sulfonamides via BrÃ,nsted acid-catalyzed C(sp ³)–H bond functionalization of 2-alkylazaarenes. Organic and Biomolecular Chemistry, 2016, 14, 5525-5528.	2.8	10
53	Nickelâ€Catalyzed Synthesis of Enamides and Enecarbamates <i>via</i> Isomerization of Allylamides and Allylcarbamates. Advanced Synthesis and Catalysis, 2015, 357, 3321-3324.	4.3	23
54	Synthesis of <i>N</i> à€Acylâ€N,Oâ€acetals from Aldehydes, Amides and Alcohols. European Journal of Organic Chemistry, 2015, 2015, 4624-4627.	2.4	22

#	Article	IF	Citations
55	Palladium-Catalyzed Enantioselective Three-Component Synthesis of α-Substituted Amines. Organic Letters, 2015, 17, 3162-3165.	4.6	46
56	$Bi(OTf) < sub > 3 < / sub > - Catalyzed \ Multicomponent \ \hat{l} \pm - Amidoalky lation \ Reactions. \ Journal \ of \ Organic \ Chemistry, 2015, 80, 6193-6212.$	3.2	34
57	One-Pot Synthesis of Aryl Sulfones from Organometallic Reagents and Iodonium Salts. Journal of Organic Chemistry, 2015, 80, 2582-2600.	3.2	52
58	Bi(OTf)3-catalyzed three-component synthesis of \hat{l} ±-amino acid derivatives. Organic and Biomolecular Chemistry, 2014, 12, 2356-2359.	2.8	16
59	Ironâ€Catalyzed Threeâ€Component Synthesis of αâ€Amino Acid Derivatives. European Journal of Organic Chemistry, 2013, 2013, 7471-7475.	2.4	23
60	A Lewis Acid Palladium(II)-Catalyzed Three-Component Synthesis of α-Substituted Amides. Organic Letters, 2013, 15, 6046-6049.	4.6	42
61	Arylation of Lithium Sulfinates with Diaryliodonium Salts: A Direct and Versatile Access to Arylsulfones. Organic Letters, 2013, 15, 4972-4975.	4.6	62
62	Metal-Free Synthesis of Diaryl Sulfones from Arylsulfinic Acid Salts and Diaryliodonium Salts. Organic Letters, 2013, 15, 188-191.	4.6	148
63	Bi(OTf)3-Catalyzed Three-Component Synthesis of Amidomethylarenes and -Heteroarenes. Synlett, 2013, 24, 2057-2060.	1.8	7
64	Scalable Synthesis of Cortistatin A and Related Structures. Journal of the American Chemical Society, 2011, 133, 8014-8027.	13.7	115
65	Preparation of Solid Saltâ€Stabilized Functionalized Organozinc Compounds and their Application to Crossâ€Coupling and Carbonyl Addition Reactions. Angewandte Chemie - International Edition, 2011, 50, 9205-9209.	13.8	95
66	Functionalization of heterocyclic compounds using polyfunctional magnesium and zinc reagents. Beilstein Journal of Organic Chemistry, 2011, 7, 1261-1277.	2.2	49
67	Structure–Reactivity Relationships in Negishi Crossâ€Coupling Reactions. Chemistry - A European Journal, 2010, 16, 248-253.	3.3	36
68	MgCl ₂ â€Accelerated Addition of Functionalized Organozinc Reagents to Aldehydes, Ketones, and Carbon Dioxide. Angewandte Chemie - International Edition, 2010, 49, 4665-4668.	13.8	139
69	Preparation of Primary Amides from Functionalized Organozinc Halides. Organic Letters, 2010, 12, 3648-3650.	4.6	35
70	Palladium-Catalyzed Cross-Couplings of Unsaturated Halides Bearing Relatively Acidic Hydrogen Atoms with Organozinc Reagents. Synthesis, 2009, 2009, 681-686.	2.3	1
71	Negishi Crossâ€Couplings Compatible with Unprotected Amide Functions. Chemistry - A European Journal, 2009, 15, 1324-1328.	3.3	69
72	Radical Catalysis of Kumada Crossâ€Coupling Reactions Using Functionalized Grignard Reagents. Angewandte Chemie - International Edition, 2009, 48, 205-209.	13.8	155

#	Article	IF	CITATION
73	A General Preparation of Polyfunctional Benzylic Zinc Organometallic Compounds. Chemistry - an Asian Journal, 2008, 3, 1678-1691.	3.3	34
74	Palladium- and Nickel-Catalyzed Cross-Couplings of Unsaturated Halides Bearing Relatively Acidic Protons with Organozinc Reagents. Journal of Organic Chemistry, 2008, 73, 8422-8436.	3.2	100
75	Negishi Cross-Couplings of Unsaturated Halides Bearing Relatively Acidic Hydrogen Atoms with Organozinc Reagents. Organic Letters, 2008, 10, 2765-2768.	4.6	115
76	An Efficient Silane-Promoted Nickel-Catalyzed Amination of Aryl and Heteroaryl Chlorides. Journal of Organic Chemistry, 2008, 73, 1429-1434.	3.2	118
77	Nickel-Catalyzed Cross-Coupling Reactions of Aryltitanium(IV) Alkoxides with Aryl Halides. Synlett, 2007, 2007, 2077-2080.	1.8	8
78	An efficient Negishi cross-coupling reaction catalyzed by nickel(II) and diethyl phosphite. Tetrahedron, 2006, 62, 7521-7533.	1.9	62
79	Efficient Cross-Coupling of Functionalized Arylzinc Halides Catalyzed by a Nickel Chlorideâ^'Diethyl Phosphite System. Organic Letters, 2005, 7, 4871-4874.	4.6	62