Erika Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4316086/publications.pdf Version: 2024-02-01

Ερικά Οιισιικί

#	Article	IF	CITATIONS
1	Characterization of Sphingolipids from Mycopathogens:  Factors Correlating with Expression of 2-Hydroxy Fatty Acyl (E)-1"3-Unsaturation in Cerebrosides of Paracoccidioides brasiliensis and Aspergillus fumigatus. Biochemistry, 1999, 38, 7294-7306.	2.5	103
2	Effect of Ganglioside and Tetraspanins in Microdomains on Interaction of Integrins with Fibroblast Growth Factor Receptor. Journal of Biological Chemistry, 2005, 280, 16227-16234.	3.4	98
3	Sphingosine-dependent apoptosis: A unified concept based on multiple mechanisms operating in concert. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14788-14793.	7.1	83
4	Cell Growth Regulation through GM3-enriched Microdomain (Glycosynapse) in Human Lung Embryonal Fibroblast WI38 and Its Oncogenic Transformant VA13. Journal of Biological Chemistry, 2004, 279, 34655-34664.	3.4	75
5	Sphingosine-dependent Protein Kinase-1, Directed to 14-3-3, Is Identified as the Kinase Domain of Protein Kinase Cl´. Journal of Biological Chemistry, 2003, 278, 41557-41565.	3.4	66
6	A monoclonal antibody directed to terminal residue of β-galactofuranose of a glycolipid antigen isolated from Paracoccidioides brasiliensis: cross-reactivity with Leishmania major and Trypanosoma cruzi. Glycobiology, 1997, 7, 463-468.	2.5	52
7	Characterization of cerebrosides from the thermally dimorphic mycopathogen Histoplasma capsulatum: expression of 2-hydroxy fatty N-acyl (E)-Â3-unsaturation correlates with the yeast-mycelium phase transition. Glycobiology, 2001, 11, 113-124.	2.5	51
8	Trypanosomatid and fungal glycolipids and sphingolipids as infectivity factors and potential targets for development of new therapeutic strategies. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 362-369.	2.4	38
9	Enterolobium contortisiliquum Trypsin Inhibitor (EcTI), a Plant Proteinase Inhibitor, Decreases in Vitro Cell Adhesion and Invasion by Inhibition of Src Protein-Focal Adhesion Kinase (FAK) Signaling Pathways*. Journal of Biological Chemistry, 2012, 287, 170-182.	3.4	36
10	Role of β- d -Galactofuranose in Leishmania major Macrophage Invasion. Infection and Immunity, 2002, 70, 6592-6596.	2.2	35
11	Structural Characterization of a New Galactofuranose-Containing Glycolipid Antigen ofParacoccidioides brasiliensis. Biochemical and Biophysical Research Communications, 1996, 222, 639-645.	2.1	31
12	Interaction of epithelial cell membrane rafts with Paracoccidioides brasiliensis leads to fungal adhesion and Src-family kinase activation. Microbes and Infection, 2008, 10, 540-547.	1.9	30
13	Membrane microdomain components of Histoplasma capsulatum yeast forms, and their role in alveolar macrophage infectivity. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 458-466.	2.6	25
14	Current relevance of fungal and trypanosomatid glycolipids and sphingolipids: studies defining structures conspicuously absent in mammals. Anais Da Academia Brasileira De Ciencias, 2009, 81, 477-488.	0.8	24
15	Candida albicans: The Ability to Invade Epithelial Cells and Survive under Oxidative Stress Is Unlinked to Hyphal Length. Frontiers in Microbiology, 2017, 8, 1235.	3.5	24
16	Paracoccidioides brasiliensis induces secretion of IL-6 and IL-8 by lung epithelial cells. Modulation of host cytokine levels by fungal proteases. Microbes and Infection, 2012, 14, 1077-1085.	1.9	21
17	Effect of anti-glycosphingolipid monoclonal antibodies in pathogenic fungal growth and differentiation. Characterization of monoclonal antibody MEST-3 directed to Manp α1→3Manp α1→2IPC. BMC Microbiology, 2010, 10, 47.	3.3	19
18	The Impaired Viability of Prostate Cancer Cell Lines by the Recombinant Plant Kallikrein Inhibitor. Journal of Biological Chemistry, 2013, 288, 13641-13654.	3.4	19

Erika Suzuki

#	Article	IF	CITATIONS
19	A sphingosine-dependent protein kinase that specifically phosphorylates 14-3-3 (SDK1) is identified as the kinase domain of PKCI´: a preliminary note. Biochemical and Biophysical Research Communications, 2003, 307, 589-594.	2.1	12
20	Role of Host Glycosphingolipids on Paracoccidioides brasiliensis Adhesion. Mycopathologia, 2011, 171, 325-332.	3.1	12
21	Reactivity of MEST-1 (Antigalactofuranose) withTrypanosoma cruzi Glycosylinositol Phosphorylceramides (GIPCs): Immunolocalization of GIPCs in Acidic Vesicles of Epimastigotes. Vaccine Journal, 2001, 8, 1031-1035.	2.6	10
22	Histoplasma capsulatum-Induced Cytokine Secretion in Lung Epithelial Cells Is Dependent on Host Integrins, Src-Family Kinase Activation, and Membrane Raft Recruitment. Frontiers in Microbiology, 2016, 7, 580.	3.5	9
23	Paracoccidioides brasiliensis induces cytokine secretion in epithelial cells in a protease-activated receptor-dependent (PAR) manner. Medical Microbiology and Immunology, 2017, 206, 149-156.	4.8	9
24	Role of protein kinase C in cytokine secretion by lung epithelial cells during infection with <i>Paracoccidioides brasiliensis</i> . Pathogens and Disease, 2015, 73, ftv045.	2.0	8
25	Paracoccidioides brasiliensis induces recruitment of α3 and α5 integrins into epithelial cell membrane rafts, leading to cytokine secretion. Microbes and Infection, 2016, 18, 68-77.	1.9	7
26	Paracoccidioides species present distinct fungal adherence to epithelial lung cells and promote different IL-8 secretion levels. Medical Microbiology and Immunology, 2020, 209, 59-67.	4.8	7
27	Inhibition of macrophage invasion by monoclonal antibodies specific to Leishmania (Viannia) braziliensis promastigotes and characterisation of their antigens. International Journal for Parasitology, 2001, 31, 1451-1458.	3.1	6
28	Paracoccidioides brasiliensis downmodulates α3 integrin levels in human lung epithelial cells in a TLR2-dependent manner. Scientific Reports, 2020, 10, 19483.	3.3	6
29	Respiratory Epithelial Cells: More Than Just a Physical Barrier to Fungal Infections. Journal of Fungi (Basel, Switzerland), 2022, 8, 548.	3.5	5
30	Histoplasma capsulatum chemotypes I and II induce IL-8 secretion in lung epithelial cells in distinct manners. Medical Mycology, 2020, 58, 1169-1177.	0.7	3