Stephan Bartling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/431545/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of N ₂ O and Water on Activity and Selectivity in the Oxidative Coupling of Methane over Mn–Na ₂ WO ₄ /SiO ₂ : Role of Oxygen Species. ACS Catalysis, 2022, 12, 1298-1309.	11.2	20
2	Effects of modifier (Gd, Sc, La) addition on the stability of low Ni content catalyst for dry reforming of model biogas. Fuel, 2022, 312, 122823.	6.4	8
3	Scalable and selective deuteration of (hetero)arenes. Nature Chemistry, 2022, 14, 334-341.	13.6	56
4	Oxygen vacancies in Ru/TiO2 - drivers of low-temperature CO2 methanation assessed by multimodal operando spectroscopy. IScience, 2022, 25, 103886.	4.1	10
5	Structural Reconstruction in Lead-Free Two-Dimensional Tin Iodide Perovskites Leading to High Quantum Yield Emission. ACS Energy Letters, 2022, 7, 975-983.	17.4	19
6	Efficient Base Nickel-Catalyzed Hydrogenolysis of Furfural-Derived Tetrahydrofurfuryl Alcohol to 1,5-Pentanediol. ACS Sustainable Chemistry and Engineering, 2022, 10, 4954-4968.	6.7	14
7	Effect of Cerium Promoters on an MCM-41-Supported Nickel Catalyst in Dry Reforming of Methane. Industrial & Engineering Chemistry Research, 2022, 61, 164-174.	3.7	33
8	Generation of Cobalt-Containing Nanoparticles on Carbon via Pyrolysis of a Cobalt Corrole and Its Application in the Hydrogenation of Nitroarenes. Catalysts, 2022, 12, 11.	3.5	3
9	Cobalt-catalysed CH-alkylation of indoles with alcohols by borrowing hydrogen methodology. Green Chemistry, 2022, 24, 4566-4572.	9.0	19
10	Manganese atalysed Deuterium Labelling of Anilines and Electronâ€Rich (Hetero)Arenes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
11	Diastereoselective hydrogenation of arenes and pyridines using supported ruthenium nanoparticles under mild conditions. Chemical Communications, 2022, 58, 8842-8845.	4.1	6
12	Esterification of sugarcane bagasse by citric acid for Pb2+ adsorption: effect of different chemical pretreatment methods. Environmental Science and Pollution Research, 2021, 28, 11869-11881.	5.3	17
13	Elucidating the effects of individual components in K _{<i>x</i>} MnO _{<i>y</i>} /SiO ₂ and water on selectivity enhancement in the oxidative coupling of methane. Catalysis Science and Technology, 2021, 11, 5827-5838.	4.1	6
14	Copper-catalysed low-temperature water–gas shift reaction for selective deuteration of aryl halides. Chemical Science, 2021, 12, 14033-14038.	7.4	10
15	Shedding Light on CO Oxidation Surface Chemistry on Single Pt Catalyst Nanoparticles Inside a Nanofluidic Model Pore. ACS Catalysis, 2021, 11, 2021-2033.	11.2	3
16	Color Tuning of Electrochromic TiO ₂ Nanofibrous Layers Loaded with Metal and Metal Oxide Nanoparticles for Smart Colored Windows. ACS Applied Nano Materials, 2021, 4, 8600-8610.	5.0	17
17	Tiny Species with Big Impact: High Activity of Cu Single Atoms on CeO ₂ –TiO ₂ Deciphered by <i>Operando</i> Spectroscopy. ACS Catalysis, 2021, 11, 10933-10949.	11.2	39
18	Heat accumulation during femtosecond laser treatment at high repetition rate – A morphological, chemical and crystallographic characterization of self-organized structures on Ti6Al4V. Applied Surface Science, 2021, 570, 151115.	6.1	17

STEPHAN BARTLING

#	Article	IF	CITATIONS
19	The solvent determines the product in the hydrogenation of aromatic ketones using unligated RhCl ₃ as catalyst precursor. Catalysis Science and Technology, 2021, 11, 7608-7616.	4.1	0
20	Enhanced photocatalytic performance of polymeric carbon nitride through combination of iron loading and hydrogen peroxide treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124383.	4.7	5
21	Elucidating the Nature of Active Sites and Fundamentals for their Creation in Zn-Containing ZrO ₂ –Based Catalysts for Nonoxidative Propane Dehydrogenation. ACS Catalysis, 2020, 10, 8933-8949.	11.2	62
22	Effect of Chemical Solvents on the Wetting Behavior Over Time of Femtosecond Laser Structured Ti6Al4V Surfaces. Nanomaterials, 2020, 10, 1241.	4.1	30
23	TiO ₂ -Supported catalysts with ZnO and ZrO ₂ for non-oxidative dehydrogenation of propane: mechanistic analysis and application potential. Catalysis Science and Technology, 2020, 10, 7046-7055.	4.1	11
24	Structure–Activity–Selectivity Relationships in Propane Dehydrogenation over Rh/ZrO ₂ Catalysts. ACS Catalysis, 2020, 10, 6377-6388.	11.2	47
25	Iron/N-doped graphene nano-structured catalysts for general cyclopropanation of olefins. Chemical Science, 2020, 11, 6217-6221.	7.4	12
26	<i>Operando</i> detection of single nanoparticle activity dynamics inside a model pore catalyst material. Science Advances, 2020, 6, eaba7678.	10.3	14
27	Revisiting Activity- and Selectivity-Enhancing Effects of Water in the Oxidative Coupling of Methane over MnO <i>_x</i> -Na ₂ WO ₄ /SiO ₂ and Proving for Other Materials. ACS Catalysis, 2020, 10, 8751-8764.	11.2	33
28	The effect of supported Rh, Ru, Pt or Ir nanoparticles on activity and selectivity of ZrO2-based catalysts in non-oxidative dehydrogenation of propane. Applied Catalysis A: General, 2020, 602, 117731.	4.3	27
29	Towards a practical perfluoroalkylation of (hetero)arenes with perfluoroalkyl bromides using cobalt nanocatalysts. Catalysis Science and Technology, 2020, 10, 1731-1738.	4.1	10
30	Heterogeneously Catalysed Oxidative Dehydrogenation of Menthol in a Fixedâ€Bed Reactor in the Gas Phase. ChemistryOpen, 2019, 8, 1066-1075.	1.9	1
31	Biomolecule-derived supported cobalt nanoparticles for hydrogenation of industrial olefins, natural oils and more in water. Green Chemistry, 2019, 21, 5104-5112.	9.0	11
32	Influence of MoS2 on Activity and Stability of Carbon Nitride in Photocatalytic Hydrogen Production. Catalysts, 2019, 9, 695.	3.5	15
33	Additive-Free Nickel-Catalyzed Debenzylation Reactions via Hydrogenative C–O and C–N Bond Cleavage. ACS Sustainable Chemistry and Engineering, 2019, 7, 17107-17113.	6.7	12
34	General and Chemoselective Copper Oxide Catalysts for Hydrogenation Reactions. ACS Catalysis, 2019, 9, 4302-4307.	11.2	56
35	Supported Cobalt Nanoparticles for Hydroformylation Reactions. Chemistry - A European Journal, 2019, 25, 5534-5538.	3.3	34
36	Bimetallic Agâ€Pt Subâ€nanometer Supported Clusters as Highly Efficient and Robust Oxidation Catalysts. Angewandte Chemie, 2018, 130, 1223-1227.	2.0	3

#	Article	IF	CITATIONS
37	Synergistic effect of VOx and MnOx surface species for improved performance of V2O5/Ce0.5Ti0.5â''xMnxO2â^'δ catalysts in low-temperature NH3-SCR of NO. Catalysis Science and Technology, 2018, 8, 6360-6374.	4.1	24
38	Alumina-supported sub-nanometer Pt ₁₀ clusters: amorphization and role of the support material in a highly active CO oxidation catalyst. Journal of Materials Chemistry A, 2017, 5, 4923-4931.	10.3	72
39	Morphological impact on the reaction kinetics of size-selected cobalt oxide nanoparticles. Journal of Chemical Physics, 2015, 143, 114301.	3.0	3
40	Pronounced Size Dependence in Structure and Morphology of Gas-Phase Produced, Partially Oxidized Cobalt Nanoparticles under Catalytic Reaction Conditions. ACS Nano, 2015, 9, 5984-5998.	14.6	17
41	The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering. Nature Communications, 2015, 6, 6187.	12.8	82
42	Ex situ investigations of MOCVD-grown gallium nitride nanowires using reflection high energy electron diffraction. IOP Conference Series: Materials Science and Engineering, 2011, 23, 012038.	0.6	0
43	Manganeseâ€Catalysed Deuterium Labelling of Anilines and Electronâ€Rich (Hetero)Arenes. Angewandte Chemie, 0, , .	2.0	Ο