Ali Ebrahim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4315296/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computation of condition-dependent proteome allocation reveals variability in the macro and micro nutrient requirements for growth. PLoS Computational Biology, 2021, 17, e1007817.	3.2	3
2	<scp>SBML</scp> Level 3: an extensible format for the exchange and reuse of biological models. Molecular Systems Biology, 2020, 16, e9110.	7.2	178
3	DynamicME: dynamic simulation and refinement of integrated models of metabolism and protein expression. BMC Systems Biology, 2019, 13, 2.	3.0	45
4	Predicting proteome allocation, overflow metabolism, and metal requirements in a model acetogen. PLoS Computational Biology, 2019, 15, e1006848.	3.2	46
5	COBRAme: A computational framework for genome-scale models of metabolism and gene expression. PLoS Computational Biology, 2018, 14, e1006302.	3.2	123
6	ChIP-exo interrogation of Crp, DNA, and RNAP holoenzyme interactions. PLoS ONE, 2018, 13, e0197272.	2.5	20
7	solveME: fast and reliable solution of nonlinear ME models. BMC Bioinformatics, 2016, 17, 391.	2.6	39
8	Principles of proteome allocation are revealed using proteomic data and genome-scale models. Scientific Reports, 2016, 6, 36734.	3.3	31
9	Multi-omic data integration enables discovery of hidden biological regularities. Nature Communications, 2016, 7, 13091.	12.8	141
10	BiGG Models: A platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Research, 2016, 44, D515-D522.	14.5	746
11	Do genomeâ€scale models need exact solvers or clearer standards?. Molecular Systems Biology, 2015, 11, 831.	7.2	68
12	Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways. PLoS Computational Biology, 2015, 11, e1004321.	3.2	344
13	Model-driven discovery of underground metabolic functions in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 929-934.	7.1	82
14	Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10810-10815.	7.1	42
15	Use of Adaptive Laboratory Evolution To Discover Key Mutations Enabling Rapid Growth of Escherichia coli K-12 MG1655 on Glucose Minimal Medium. Applied and Environmental Microbiology, 2015, 81, 17-30.	3.1	235
16	Determining the Control Circuitry of Redox Metabolism at the Genome-Scale. PLoS Genetics, 2014, 10, e1004264.	3.5	67
17	Minimal metabolic pathway structure is consistent with associated biomolecular interactions. Molecular Systems Biology, 2014, 10, 737.	7.2	41
18	Evolution of Escherichia coli to 42 °C and Subsequent Genetic Engineering Reveals Adaptive Mechanisms and Novel Mutations. Molecular Biology and Evolution, 2014, 31, 2647-2662.	8.9	145

Ali Ebrahim

#	Article	IF	CITATIONS
19	GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data. Bioinformatics, 2013, 29, 2900-2908.	4.1	122
20	COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Systems Biology, 2013, 7, 74.	3.0	973
21	Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microbial Cell Factories, 2013, 12, 118.	4.0	145
22	Sulfide-Driven Microbial Electrosynthesis. Environmental Science & amp; Technology, 2013, 47, 568-573.	10.0	101
23	Electrical Detection of TATA Binding Protein at DNA-Modified Microelectrodes. Journal of the American Chemical Society, 2008, 130, 2924-2925.	13.7	85