Tetsuo Kobayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4314956/publications.pdf

Version: 2024-02-01

107 papers 5,448 citations

33 h-index 72 g-index

109 all docs 109 docs citations 109 times ranked 4469 citing authors

#	Article	IF	CITATIONS
1	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	27.8	1,272
2	Genome sequencing and analysis of Aspergillus oryzae. Nature, 2005, 438, 1157-1161.	27.8	1,128
3	Genomics of <i>Aspergillus oryzae </i> . Bioscience, Biotechnology and Biochemistry, 2007, 71, 646-670.	1.3	163
4	Novel α-Glucosidase from Aspergillus nidulans with Strong Transglycosylation Activity. Applied and Environmental Microbiology, 2002, 68, 1250-1256.	3.1	120
5	Identification of specific binding sites for XYR1, a transcriptional activator of cellulolytic and xylanolytic genes in Trichoderma reesei. Fungal Genetics and Biology, 2009, 46, 564-574.	2.1	117
6	Complex regulation of hydrolytic enzyme genes for cellulosic biomass degradation in filamentous fungi. Applied Microbiology and Biotechnology, 2014, 98, 4829-4837.	3.6	112
7	Genes regulated by AoXlnR, the xylanolytic and cellulolytic transcriptional regulator, in Aspergillus oryzae. Applied Microbiology and Biotechnology, 2009, 85, 141-154.	3.6	104
8	Thermococcus profundus sp. nov., A New Hyperthermophilic Archaeon Isolated from a Deep-sea Hydrothermal Vent. Systematic and Applied Microbiology, 1994, 17, 232-236.	2.8	96
9	A Transcriptional Activator, AoXlnR, Controls the Expression of Genes Encoding Xylanolytic Enzymes in Aspergillus oryzae. Fungal Genetics and Biology, 2002, 35, 157-169.	2.1	90
10	Characterization of the amyR gene encoding a transcriptional activator for the amylase genes in Aspergillus nidulans. Current Genetics, 2001, 39, 10-15.	1.7	81
11	ManR, a novel Zn(II)2Cys6 transcriptional activator, controls the \hat{I}^2 -mannan utilization system in Aspergillus oryzae. Fungal Genetics and Biology, 2012, 49, 987-995.	2.1	79
12	The SskA and SrrA Response Regulators Are Implicated in Oxidative Stress Responses of Hyphae and Asexual Spores in the Phosphorelay Signaling Network of <i> Aspergillus nidulans < /i > . Bioscience, Biotechnology and Biochemistry, 2007, 71, 1003-1014.</i>	1.3	75
13	Construction of an excretion vector and extracellular production of human growth hormone from Escherichia coli. Gene, 1987, 54, 197-202.	2.2	74
14	Analysis of Expressed Sequence Tags from the Fungus Aspergillus oryzae Cultured Under Different Conditions. DNA Research, 2007, 14, 47-57.	3.4	73
15	Characterization of the NikA Histidine Kinase Implicated in the Phosphorelay Signal Transduction of Aspergillus nidulans, with Special Reference to Fungicide Responses. Bioscience, Biotechnology and Biochemistry, 2007, 71, 844-847.	1.3	73
16	A Single Subunit of a Heterotrimeric CCAAT-binding Complex Carries a Nuclear Localization Signal: Piggy Back Transport of the Pre-assembled Complex to the Nucleus. Journal of Molecular Biology, 2004, 342, 515-524.	4.2	70
17	Transcriptional activator, AoXlnR, mediates cellulose-inductive expression of the xylanolytic and cellulolytic genes inAspergillus oryzae. FEBS Letters, 2002, 528, 279-282.	2.8	65
18	Regulation of the amylolytic and (hemi-)cellulolytic genes in aspergilli. Journal of General and Applied Microbiology, 2001, 47, 1-19.	0.7	61

#	Article	IF	Citations
19	Properties of Glutamate Dehydrogenase and Its Involvement in Alanine Production in a Hyperthermophilic Archaeon, Thermococcus profundus1. Journal of Biochemistry, 1995, 118, 587-592.	1.7	58
20	ManR, a Transcriptional Regulator of the β-Mannan Utilization System, Controls the Cellulose Utilization System in <i>Aspergillus oryzae</i> . Bioscience, Biotechnology and Biochemistry, 2013, 77, 426-429.	1.3	55
21	Novel \hat{l}^2 -1,4-Mannanase Belonging to a New Glycoside Hydrolase Family in Aspergillus nidulans. Journal of Biological Chemistry, 2015, 290, 27914-27927.	3.4	53
22	Genome sequence of <i>Aspergillus luchuensis </i> NBRC 4314. DNA Research, 2016, 23, 507-515.	3.4	48
23	Xylose Triggers Reversible Phosphorylation of XlnR, the Fungal Transcriptional Activator of Xylanolytic and Cellulolytic Genes in <i>Aspergillus oryzae</i> Bioscience, Biotechnology and Biochemistry, 2011, 75, 953-959.	1.3	45
24	Expression Profile of Amylolytic Genes in Aspergillus nidulans. Bioscience, Biotechnology and Biochemistry, 2006, 70, 2363-2370.	1.3	43
25	Conservation and diversity of the regulators of cellulolytic enzyme genes in Ascomycete fungi. Current Genetics, 2017, 63, 951-958.	1.7	41
26	Biochemical characterization of thermostable \hat{l}^2 -1,4-mannanase belonging to the glycoside hydrolase family 134 from Aspergillus oryzae. Applied Microbiology and Biotechnology, 2017, 101, 3237-3245.	3.6	40
27	Enzymatic saccharification of Eucalyptus bark using hydrothermal pre-treatment with carbon dioxide. Bioresource Technology, 2010, 101, 4936-4939.	9.6	39
28	Cloning, nucleotide sequence, and hyperexpression of \hat{l}_{\pm} -amylase gene from an archaeon, Thermococcus profundus. Journal of Bioscience and Bioengineering, 1996, 82, 432-438.	0.9	36
29	Sequence analysis of the gene for and characterization of d-acetoin forming meso-2,3-butanediol dehydrogenase of Klebsiella pneumoniae expressed in Escherichia coli. Journal of Bioscience and Bioengineering, 1997, 83, 32-37.	0.9	36
30	Structure and expression properties of the endo- $\tilde{A}\check{Z}\hat{A}^2$ -1,4-glucanase A gene from the filamentous fungusAspergillus nidulans. FEMS Microbiology Letters, 1999, 175, 239-245.	1.8	36
31	Deciphering the Combinatorial DNA-binding Code of the CCAAT-binding Complex and the Iron-regulatory Basic Region Leucine Zipper (bZIP) Transcription Factor HapX. Journal of Biological Chemistry, 2015, 290, 6058-6070.	3.4	36
32	Isomaltose formed by α-glucosidases triggers amylase induction in Aspergillus nidulans. Current Genetics, 2002, 42, 43-50.	1.7	35
33	Inducer-Dependent Nuclear Localization of a Zn(II) ₂ Cys ₆ Transcriptional Activator, AmyR, in <i>Aspergillus nidulans</i> . Bioscience, Biotechnology and Biochemistry, 2009, 73, 391-399.	1.3	35
34	In Vivo and in Vitro Analyses of the AmyR Binding Site of the Aspergillus nidulans agdA Promoter; Requirement of the CGG Direct Repeat for Induction and High Affinity Binding of AmyR. Bioscience, Biotechnology and Biochemistry, 2001, 65, 1568-1574.	1.3	34
35	Isolation of genes encoding novel transcription factors which interact with the Hap complex from Aspergillus species. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1576, 176-182.	2.4	33
36	Construction of an excretion vector: Extracellular production of Aeromonas xylanase and Bacillus cellulases by Escherichia coli. FEMS Microbiology Letters, 1986, 36, 31-34.	1.8	30

#	Article	IF	CITATIONS
37	Comparison and characterization of î±-amylase inducers in Aspergillus nidulans based on nuclear localization of AmyR. Applied Microbiology and Biotechnology, 2012, 94, 1629-1635.	3.6	30
38	Mode of AmyR Binding to the CGGN8AGG Sequence in the Aspergillus oryzaeta a G2Promoter. Bioscience, Biotechnology and Biochemistry, 2004, 68, 1906-1911.	1.3	29
39	Construction of a Bacterial Artificial Chromosome Library for a Myxobacterium of the GenusCystobacterand Characterization of an Antibiotic Biosynthetic Gene Cluster. Bioscience, Biotechnology and Biochemistry, 2005, 69, 1372-1380.	1.3	29
40	ASYMMETRIC-LEAVES2 and an ortholog of eukaryotic NudC domain proteins repress expression of $\langle i \rangle$ AUXIN-RESPONSE-FACTOR $\langle i \rangle$ and class $1 \langle i \rangle$ KNOX $\langle i \rangle$ homeobox genes for development of flat symmetric leaves in $\langle i \rangle$ Arabidopsis $\langle i \rangle$. Biology Open, 2012, 1, 197-207.	1.2	28
41	Identification of the cis-acting elements involved in regulation of xylanase III gene expression in Trichoderma reesei PC-3-7. Fungal Genetics and Biology, 2008, 45, 1094-1102.	2.1	27
42	An Aspergillus oryzae CCAAT-binding protein, AoCP, is involved in the high-level expression of the Taka-amylase A gene. Current Genetics, 2000, 37, 380-387.	1.7	25
43	Nuclear translocation of the heterotrimeric CCAAT binding factor of Aspergillus oryzae is dependent on two redundant localising signals in a single subunit. Archives of Microbiology, 2005, 184, 93-100.	2.2	25
44	In VitroAnalysis of His-Asp Phosphorelays inAspergillus nidulans: The First Direct Biochemical Evidence for the Existence of His-Asp Phosphotransfer Systems in Filamentous Fungi. Bioscience, Biotechnology and Biochemistry, 2007, 71, 2493-2502.	1.3	25
45	Novel Reporter Gene Expression Systems for Monitoring Activation of the Aspergillus nidulans HOG Pathway. Bioscience, Biotechnology and Biochemistry, 2007, 71, 1724-1730.	1.3	23
46	Novel Promoter Sequence Required for Inductive Expression of the <i>Aspergillus nidulans </i> Endoglucanase Gene <i>eglA </i> . Bioscience, Biotechnology and Biochemistry, 2008, 72, 312-320.	1.3	23
47	Regulation of cellulolytic genes by McmA, the SRF-MADS box protein in Aspergillus nidulans. Biochemical and Biophysical Research Communications, 2013, 431, 777-782.	2.1	23
48	CreA-independent carbon catabolite repression of cellulase genes by trimeric G-protein and protein kinase A in Aspergillus nidulans. Current Genetics, 2019, 65, 941-952.	1.7	23
49	Molecular cloning, nucleotide sequence and expression of the structural gene for a thermostable alkaline protease from Bacillus sp. no. AH-101. Applied Microbiology and Biotechnology, 1992, 38, 101-8.	3.6	22
50	A novel nuclear factor, SREB, binds to a cis-acting element, SRE, required for inducible expression of the Aspergillus oryzae Taka-amylase A gene in A. nidulans. Molecular Genetics and Genomics, 2000, 263, 232-238.	2.4	22
51	Regulation of genes encoding cellulolytic enzymes by Pal-PacC signaling in Aspergillus nidulans. Applied Microbiology and Biotechnology, 2016, 100, 3621-3635.	3.6	22
52	A set of heterologous promoters useful for investigating gene functions in Fusarium graminearum. Mycotoxins, 2014, 64, 147-152.	0.2	21
53	Functional analysis of the egl3 upstream region in filamentous fungus Trichoderma reesei. Applied Microbiology and Biotechnology, 2008, 78, 515-524.	3.6	20
54	Hydroxylations of trichothecene rings in the biosynthesis of <i>Fusarium</i> trichothecenes: evolution of alternative pathways in the nivalenol chemotype. Environmental Microbiology, 2016, 18, 3798-3811.	3.8	20

#	Article	IF	CITATIONS
55	Comparison of the paralogous transcription factors AraR and XlnR in Aspergillus oryzae. Current Genetics, 2018, 64, 1245-1260.	1.7	19
56	Isolation and characterization of a pock-forming plasmid pTA4001 from Streptomyces lavendulae Journal of Antibiotics, 1984, 37, 368-375.	2.0	17
57	Cloning and characterization of the streptothricin-resistance gene which encodes streptothricin acetyltransferase from Streptomyces lavendulae Journal of Antibiotics, 1986, 39, 688-693.	2.0	17
58	Molecular Cloning, Nucleotide Sequence, and Expression of the Structural Gene for Alkaline Serine Protease from AlkaliphilicBacillussp. 221. Bioscience, Biotechnology and Biochemistry, 1992, 56, 1455-1460.	1.3	17
59	AoHapB, AoHapC and AoHapE, subunits of the Aspergillus oryzae CCAAT-binding complex, are functionally interchangeable with the corresponding subunits in Aspergillus nidulans. Current Genetics, 2001, 39, 175-182.	1.7	17
60	GFP-Tagged Expression Analysis Revealed That Some Histidine Kinases of (i) Aspergillus nidulans (i) Show Temporally and Spatially Different Expression during the Life Cycle. Bioscience, Biotechnology and Biochemistry, 2008, 72, 428-434.	1.3	16
61	<scp>M</scp> cm <scp>A</scp> â€dependent and â€independent regulatory systems governing expression of <scp>C</scp> lr <scp>B</scp> â€regulated cellulase and hemicellulase genes in <scp><i>A</i></scp> <i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C<i>Stop>C</i>Stop>CCStop</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	2.5	15
62	Purification and biochemical characterization of streptothricin acetyltransferase coded by the cloned streptothricin-resistance gene of Streptomyces lavendulae Journal of Antibiotics, 1987, 40, 1016-1022.	2.0	14
63	Preparation of a chiral acetoinic compound using transgenic Escherichia coli expressing the 2,3-butanediol dehydrogenase gene. Journal of Bioscience and Bioengineering, 1996, 81, 386-389.	0.9	14
64	Control of reactive oxygen species (ROS) production through histidine kinases in <i>Aspergillus nidulans</i> under different growth conditions. FEBS Open Bio, 2014, 4, 90-95.	2.3	13
65	Spatial Abundance and Distribution of Potential Microbes and Functional Genes Associated with Anaerobic Mineralization of Pentachlorophenol in a Cylindrical Reactor. Scientific Reports, 2016, 6, 19015.	3.3	13
66	l-Threonine and its analogue added to autoclaved solid medium suppress trichothecene production by Fusarium graminearum. Archives of Microbiology, 2017, 199, 945-952.	2,2	12
67	Molecular cloning, nucleotide sequence and expression in Escherichia coli of hyperthermophilic glutamate dehydrogenase gene from Thermococcus profundus. Journal of Bioscience and Bioengineering, 1997, 83, 405-411.	0.9	11
68	Post-genomic approaches to understanding interactions between fungi and their environment. IMA Fungus, 2011, 2, 81-86.	3.8	11
69	Comprehensive Analysis of the DNA-Binding Specificity of an <i>Aspergillus nidulans</i> Transcription Factor, AmyR, Using a Bead Display System. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1128-1134.	1.3	11
70	Identification and Characterization of an Inhibitor of Trichothecene 3- <i>O</i> -Acetyltransferase, TRI101, by the Chemical Array Approach. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1958-1960.	1.3	11
71	Effect of disrupting the trichothecene efflux pump encoded by <i>FgTri12</i> in the nivalenol chemotype of <i>Fusarium graminearum</i> . Journal of General and Applied Microbiology, 2015, 61, 93-96.	0.7	11
72	Oligosaccharides containing an \hat{l} ±- $(1~\hat{a}$ †' 2) (glucosyl/xylosyl)-fructosyl linkage as inducer molecules of trichothecene biosynthesis for Fusarium graminearum. International Journal of Food Microbiology, 2016, 238, 215-221.	4.7	11

#	Article	IF	CITATIONS
73	Comprehensive investigation of the gene expression system regulated by an Aspergillus oryzae transcription factor XInR using integrated mining of gSELEX-Seq and microarray data. BMC Genomics, 2019, 20, 16.	2.8	11
74	A Robust Analytical Pipeline for Genome-Wide Identification of the Genes Regulated by a Transcription Factor: Combinatorial Analysis Performed Using gSELEX-Seq and RNA-Seq. PLoS ONE, 2016, 11, e0159011.	2.5	11
75	Title is missing!. Biotechnology Letters, 2002, 24, 1089-1096.	2.2	10
76	High-throughput screening of DNA binding sites for transcription factor AmyR from Aspergillus nidulans using DNA beads display system. Journal of Bioscience and Bioengineering, 2010, 109, 519-525.	2.2	10
77	Involvement of an SRF-MADS protein McmA in regulation of extracellular enzyme production and asexual/sexual development in <i>Aspergillus nidulans</i> Bioscience, Biotechnology and Biochemistry, 2016, 80, 1820-1828.	1.3	10
78	Identification of amino acids negatively affecting Fusarium trichothecene biosynthesis. Antonie Van Leeuwenhoek, 2019, 112, 471-478.	1.7	10
79	A Hyperthermophilic Sulfur-reducing Archaebacterium, Thermococcussp. DT1331, Isolated from a Deep-sea Hydrothermal Vent. Bioscience, Biotechnology and Biochemistry, 1995, 59, 1666-1669.	1.3	9
80	No Factors Except for the Hap Complex increase the Taka-amylase A Gene Expression by Binding to the CCAAT Sequence in the Promoter Region. Bioscience, Biotechnology and Biochemistry, 2001, 65, 2340-2342.	1.3	9
81	Upward shift of the pH optimum of Acremonium ascorbate oxidase. BBA - Proteins and Proteomics, 2002, 1596, 36-46.	2.1	9
82	A Simple and Rapid Method for the Preparation of a Cell-free Extract with CCAAT-Binding Activity from Filamentous Fungi. Bioscience, Biotechnology and Biochemistry, 2000, 64, 455-457.	1.3	8
83	Identification of a trichothecene production inhibitor by chemical array and library screening using trichodiene synthase as a target protein. Pesticide Biochemistry and Physiology, 2017, 138, 1-7.	3.6	7
84	Inhibition of Fusarium trichothecene biosynthesis by yeast extract components extractable with ethyl acetate. International Journal of Food Microbiology, 2019, 289, 24-29.	4.7	7
85	Characterization of the acivicin effects on trichothecene production by <i>Fusarium graminearum </i> species complex. Journal of General and Applied Microbiology, 2016, 62, 272-276.	0.7	6
86	Substrate specificities of Fusarium biosynthetic enzymes explain the genetic basis of a mixed chemotype producing both deoxynivalenol and nivalenol-type trichothecenes. International Journal of Food Microbiology, 2020, 320, 108532.	4.7	6
87	Molecular Cloning and Nucleotide Sequence of thegroELGene from the AlkaliphilicBacillussp. Strain C-125 and Reactivation of Thermally Inactivatedα-Glucosidase by Recombinant GroEL. Bioscience, Biotechnology and Biochemistry, 1996, 60, 1633-1636.	1.3	5
88	Identification and Characterization of Small Molecule Compounds That Modulate Trichothecene Production by <i>Fusarium graminearum</i> <i i=""> Production by <i< p=""></i<></i>	3.4	5
89	Artificial AmyR::XlnR transcription factor induces α-amylase production in response to non-edible xylan-containing hemicellulosic biomass. Enzyme and Microbial Technology, 2021, 145, 109762.	3.2	5
90	Structural features of the glycogen branching enzyme encoding genes from aspergilli. Microbiological Research, 2002, 157, 337-344.	5.3	4

#	Article	IF	CITATIONS
91	Upregulation of promoter activity of the Aspergillus oryzae xylanase gene by site-directed mutagenesis. Biotechnology Letters, 2003, 25, 371-374.	2.2	4
92	The Region in a Subunit of theAspergillusCCAAT-Binding Protein Similar to the HAP4p-Recruiting Domain ofSaccharomyces cerevisiaeHap5p Is Not Essential for Transcriptional Enhancement. Bioscience, Biotechnology and Biochemistry, 2006, 70, 782-787.	1.3	4
93	Trichothecene production in axenic liquid culture of <i>Fusarium graminearum</i> using xylose as a carbon source. Mycotoxins, 2016, 66, 17-19.	0.2	4
94	Re-examination of genetic and nutritional factors related to trichothecene biosynthesis in Fusarium graminearum. Bioscience, Biotechnology and Biochemistry, 2016, 80, 414-417.	1.3	4
95	Impact of nitrogen metabolism-associated culture pH changes on regulation of Fusarium trichothecene biosynthesis: revision of roles of polyamine agmatine and transcription factor AreA. Current Genetics, 2020, 66, 1179-1190.	1.7	4
96	A hypothetical protein (P20), homologous to Tn3 repressor is encoded downstream from theblaregulatory region inBacillus licheniformis749. Nucleic Acids Research, 1988, 16, 5691-5691.	14.5	2
97	Nuclear localization and relative stability of the zinc finger domain of TRI6 trichothecene regulator. Mycotoxins, 2016, 66, 13-15.	0.2	2
98	Location of F1ATPase-like Genes on the Physical Map of theBacillus subtilis168 Chromosome. Bioscience, Biotechnology and Biochemistry, 1993, 57, 1202-1203.	1.3	1
99	Production of reactive oxygen species in <i>Aspergillus nidulans</i> through the function of His-Asp phosphorelay signal transduction system. Mycotoxins, 2015, 65, 49-56.	0.2	1
100	Regulation of plant biomass-degrading enzyme genes in filamentous fungi. Mycotoxins, 2016, 66, 85-96.	0.2	1
101	Accumulation of an unusual trichothecene shunt metabolite in liquid culture of <i>Fusarium graminearum (i) with methionine as the sole nitrogen source. Mycotoxins, 2017, 67, 7-9.</i>	0.2	1
102	Metabolic Properties of Marine Hyperthermophiles, The Most Primitive Organisms on Earth Kagaku To Seibutsu, 1995, 33, 796-802.	0.0	0
103	æ€è€fã•ã,‰æf³åfã;i¼Œãã⊷ã∮創é€ã, Kagaku To Seibutsu, 2009, 47, 665-665.	0.0	0
104	Title is missing!. Kagaku To Seibutsu, 2009, 47, 718-724.	0.0	0
105	Introduction of a leptomycin-sensitive mutation into <i>Fusarium graminearum</i> . Mycotoxins, 2016, 66, 9-11.	0.2	0
106	Synthetic liquid media for the study of trichothecene biosynthesis regulation in <i>Fusarium graminearum </i> i> Mycotoxins, 2020, 70, 57-59.	0.2	0
107	Generation of mitochondrial reactive oxygen species through a histidine kinase, HysA in <i>Aspergillus nidulans</i> . Journal of General and Applied Microbiology, 2022, , .	0.7	0