
Abdullah M Ali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4314581/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Subversion of Serotonin Receptor Signaling in Osteoblasts by Kynurenine Drives Acute Myeloid Leukemia. Cancer Discovery, 2022, 12, 1106-1127.	9.4	12
2	SF3B1 mutant-induced missplicing of MAP3K7 causes anemia in myelodysplastic syndromes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	26
3	Mutation in SF3B1 gene promotes formation of polyploid giant cells in Leukemia cells. Medical Oncology, 2022, 39, 65.	2.5	7
4	Challenges and Solutions to Bringing Chimeric Antigen Receptor T-Cell Therapy to Myeloid Malignancies. Cancer Journal (Sudbury, Mass), 2021, 27, 143-150.	2.0	0
5	A Targetable Bone Marrow-Niche Axis for the Treatment of Acute Myeloid Leukemia. Blood, 2021, 138, 4456-4456.	1.4	1
6	Rewriting the rules for care of MDS and AML patients in the time of COVID-19. Leukemia Research Reports, 2020, 13, 100201.	0.4	14
7	Disease-Causing Mutations in SF3B1 Alter Splicing by Disrupting Interaction with SUGP1. Molecular Cell, 2019, 76, 82-95.e7.	9.7	84
8	2016 - GENE EDITED STEM CELLS COMBINED WITH TARGETED IMMUNOTHERAPY: A NOVEL APPROACH TO TREAT MYELOID MALIGNANCIES. Experimental Hematology, 2019, 76, S46.	0.4	0
9	Gene-edited stem cells enable CD33-directed immune therapy for myeloid malignancies. Proceedings of the United States of America, 2019, 116, 11978-11987.	7.1	90
10	Casein Kinase 1 Delta Is a Novel Regulator of mRNA Translation and Druggable Target in Aggressive Lymphomas. Blood, 2019, 134, 2864-2864.	1.4	0
11	Survey and evaluation of mutations in the human KLF1 transcription unit. Scientific Reports, 2018, 8, 6587.	3.3	5
12	The nuclear DEK interactome supports multiâ€functionality. Proteins: Structure, Function and Bioinformatics, 2018, 86, 88-97.	2.6	19
13	Improving Treatment for Myelodysplastic Syndromes Patients. Current Treatment Options in Oncology, 2018, 19, 66.	3.0	12
14	Severely impaired terminal erythroid differentiation as an independent prognostic marker in myelodysplastic syndromes. Blood Advances, 2018, 2, 1393-1402.	5.2	20
15	Pharmacological Targeting of Osteoblast-Induced MDS and AML. Blood, 2018, 132, 5235-5235.	1.4	1
16	DEK is required for homologous recombination repair of DNA breaks. Scientific Reports, 2017, 7, 44662.	3.3	30
17	U2AF35(S34F) Promotes Transformation by Directing Aberrant ATG7 Pre-mRNA 3′ End Formation. Molecular Cell, 2016, 62, 479-490.	9.7	111
18	Physiologic Expression of Sf3b1 K700E Causes Impaired Erythropoiesis, Aberrant Splicing, and Sensitivity to Therapeutic Spliceosome Modulation, Cancer Cell, 2016, 30, 404-417	16.8	318

Abdullah M Ali

#	Article	IF	CITATIONS
19	Rigosertib in myelodysplastic syndromes (MDS). Expert Opinion on Orphan Drugs, 2016, 4, 981-988.	0.8	2
20	Two different "tales―of ATG7: Clinical relevance to myelodysplastic syndromes. Molecular and Cellular Oncology, 2016, 3, e1212686.	0.7	3
21	Prognostic significance of neutrophil-to-lymphocyte ratio and lymphocyte-to-monocyte ratio in myelodysplastic syndromes Journal of Clinical Oncology, 2016, 34, 7062-7062.	1.6	2
22	Comparison of International Prognostic Scoring System (IPSS) and Revised IPSS (IPSS-R) in myelodysplastic syndromes (MDS) Journal of Clinical Oncology, 2016, 34, e18549-e18549.	1.6	0
23	Prognostic significance of bone marrow cellularity in myelodysplastic syndromes: a retrospective analysis Journal of Clinical Oncology, 2016, 34, e18550-e18550.	1.6	0
24	A Genomic Predictive Signature for Rigosertib in Lower Risk MDS Derived By Integrating Clinical Response, Mechanism of Action Data and Simulation. Blood, 2016, 128, 5535-5535.	1.4	0
25	Loss of <i>Faap20</i> Causes Hematopoietic Stem and Progenitor Cell Depletion in Mice Under Genotoxic Stress. Stem Cells, 2015, 33, 2320-2330.	3.2	7
26	Disease-associated mutation in <i>SRSF2</i> misregulates splicing by altering RNA-binding affinities. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4726-34.	7.1	175
27	Current View of miRNA with Tumor Suppressor Function, Exploring MDS and AML as Models. Signal Transduction Insights, 2014, 3, STI.S12316.	2.0	0
28	Loss of TET2 Function in Myelodysplastic Syndrome Results in Intragenic Hypermethylation and Alterations in mRNA Splicing. Blood, 2014, 124, 775-775.	1.4	2
29	Molecular Genetic Analysis of Myelodysplastic Syndromes (MDS) Patients with Ring Sideroblasts (RS); Independent Confirmation of Association of SF3B1 Mutations with Better Prognosis. Blood, 2014, 124, 3237-3237.	1.4	2
30	Monopolar Spindle 1 (MPS1) Protein-dependent Phosphorylation of RecQ-mediated Genome Instability Protein 2 (RMI2) at Serine 112 Is Essential for BLM-Topo III α-RMI1-RMI2 (BTR) Protein Complex Function upon Spindle Assembly Checkpoint (SAC) Activation during Mitosis. Journal of Biological Chemistry, 2013, 288, 33500-33508.	3.4	7
31	ATR-Dependent Phosphorylation of FANCM at Serine 1045 Is Essential for FANCM Functions. Cancer Research, 2013, 73, 4300-4310.	0.9	59
32	Oral Rigosertib (ON 01910.Na) Treatment Produces An Encouraging Rate Of Transfusion Independence In Lower Risk Myelodysplastic Syndromes (MDS) Patients; A Genomic Methylation Profile Is Associated With Responses. Blood, 2013, 122, 2745-2745.	1.4	5
33	FAAP20: a novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway. Blood, 2012, 119, 3285-3294.	1.4	78
34	Human MutS and FANCM complexes function as redundant DNA damage sensors in the Fanconi Anemia pathway. DNA Repair, 2011, 10, 1203-1212.	2.8	26
35	MHF1-MHF2, a Histone-Fold-Containing Protein Complex, Participates in the Fanconi Anemia Pathway via FANCM. Molecular Cell, 2010, 37, 879-886.	9.7	178
36	FANCM–FAAP24 and FANCJ: FA proteins that metabolize DNA. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 668, 20-26.	1.0	25

Abdullah M Ali

#	Article	IF	CITATIONS
37	Identification and characterization of mutations in FANCL gene: A second case of Fanconi anemia belonging to FA-L complementation group. Human Mutation, 2009, 30, E761-E770.	2.5	23
38	Characterization of the human SLC22A18 gene promoter and its regulation by the transcription factor Sp1. Gene, 2009, 429, 37-43.	2.2	7
39	Ectopic HOXB4 overcomes the inhibitory effect of tumor necrosis factor-α on Fanconi anemia hematopoietic stem and progenitor cells. Blood, 2009, 113, 5111-5120.	1.4	25
40	Impaired FANCD2 monoubiquitination and hypersensitivity to camptothecin uniquely characterize Fanconi anemia complementation group M. Blood, 2009, 114, 174-180.	1.4	118
41	BLAP18/RMI2, a novel OB-fold-containing protein, is an essential component of the Bloom helicase–double Holliday junction dissolvasome. Genes and Development, 2008, 22, 2856-2868.	5.9	187
42	FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway. EMBO Journal, 2007, 26, 2104-2114.	7.8	130
43	Role of CYP1B1, MYOC, OPTN, and OPTC genes in adult-onset primary open-angle glaucoma: predominance of CYP1B1 mutations in Indian patients. Molecular Vision, 2007, 13, 667-76.	1.1	60
44	Mutation and polymorphism analysis of TSC1 and TSC2 genes in Indian patients with tuberous sclerosis complex. Acta Neurologica Scandinavica, 2005, 111, 54-63.	2.1	24
45	Mutation analysis of the KIF21A gene in an Indian family with CFEOM1: implication of CpG methylation for most frequent mutations. Ophthalmic Genetics, 2004, 25, 247-255.	1.2	19
46	Identification of a core promoter and a novel isoform of the human TSC1 gene transcript and structural comparison with mouse homolog. Gene, 2003, 320, 145-154.	2.2	10