Massimo Dominici

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4314334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anti-GD2 CAR MSCs against metastatic Ewing's sarcoma. Translational Oncology, 2022, 15, 101240.	1.7	10
2	OUP accepted manuscript. Stem Cells Translational Medicine, 2022, 11, 239-247.	1.6	8
3	Delayed Effect of Dendritic Cells Vaccination on Survival in Glioblastoma: A Systematic Review and Meta-Analysis. Current Oncology, 2022, 29, 881-891.	0.9	11
4	Dissecting Tumor Growth: The Role of Cancer Stem Cells in Drug Resistance and Recurrence. Cancers, 2022, 14, 976.	1.7	46
5	A Roadmap for the Production of a GMP-Compatible Cell Bank of Allogeneic Bone Marrow-Derived Clonal Mesenchymal Stromal Cells for Cell Therapy Applications. Stem Cell Reviews and Reports, 2022, 18, 2279-2295.	1.7	11
6	Development and Multicentre Validation of the Modena Score to Predict Survival in Advanced Biliary Cancers Undergoing Second-Line Chemotherapy. Cancer Management and Research, 2022, Volume 14, 983-993.	0.9	0
7	Redistribution of <scp>CD8</scp> + T cell subsets in metastatic renal cell carcinoma patients treated with <scp>antiâ€PD</scp> â€1 therapy. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 597-605.	1.1	2
8	Cancer Stem Cells (CSCs), Circulating Tumor Cells (CTCs) and Their Interplay with Cancer Associated Fibroblasts (CAFs): A New World of Targets and Treatments. Cancers, 2022, 14, 2408.	1.7	15
9	Cancer Stem Cells and Cell Cycle Genes as Independent Predictors of Relapse in Non-small Cell Lung Cancer: Secondary Analysis of a Prospective Study. Stem Cells Translational Medicine, 2022, 11, 797-804.	1.6	1
10	Targeting Cancer Stem Cells: New Perspectives for a Cure to Cancer. , 2022, , 1-29.		15
11	Statins increase pathological response in locally advanced rectal cancer treated with chemoradiation: a multicenter experience. Future Oncology, 2022, 18, 2651-2659.	1.1	0
12	Developing cell therapies as drug products. British Journal of Pharmacology, 2021, 178, 262-279.	2.7	6
13	Invited Response on: Comments on "Autologous Fat Grafting for the Oral and Digital Complications of Systemic Sclerosis: Results of a Prospective Study― Aesthetic Plastic Surgery, 2021, 45, 1344-1345.	0.5	1
14	Second-line chemotherapy (2L) in elderly patients with advanced biliary tract cancer (ABC): A multicenter real-world study Journal of Clinical Oncology, 2021, 39, 322-322.	0.8	3
15	The immune checkpoint CD73 (NT5E) in gastric adenocarcinoma (GAC): Biological characterization and clinical implications Journal of Clinical Oncology, 2021, 39, 235-235.	0.8	1
16	Osteonecrosis of the Femoral Head Safely Healed with Autologous, Expanded, Bone Marrow-Derived Mesenchymal Stromal Cells in a Multicentric Trial with Minimum 5 Years Follow-Up. Journal of Clinical Medicine, 2021, 10, 508.	1.0	19
17	Cancer stem cells and macrophages: molecular connections and future perspectives against cancer. Oncotarget, 2021, 12, 230-250.	0.8	27
18	Circulating mucosal-associated invariant T cells identify patients responding to anti-PD-1 therapy. Nature Communications, 2021, 12, 1669	5.8	48

#	Article	IF	CITATIONS
19	New Perspectives in Different Gene Expression Profiles for Early and Locally Advanced Non-Small Cell Lung Cancer Stem Cells. Frontiers in Oncology, 2021, 11, 613198.	1.3	9
20	Critical considerations for the development of potency tests for therapeutic applications of mesenchymal stromal cell-derived small extracellular vesicles. Cytotherapy, 2021, 23, 373-380.	0.3	125
21	The harmonization of World Health Organization International Nonproprietary Names definitions for cell and cell-based gene therapy substances: when a name is not enough. Cytotherapy, 2021, 23, 357-366.	0.3	3
22	Assessing Biocompatibility of Face Mask Materials during COVID-19 Pandemic by a Rapid Multi-Assays Strategy. International Journal of Environmental Research and Public Health, 2021, 18, 5387.	1.2	3
23	Splenic macrophage phagocytosis of intravenously infused mesenchymal stromal cells attenuates tumor localization. Cytotherapy, 2021, 23, 411-422.	0.3	4
24	Impact of body composition, nutritional and inflammatory status on outcome of non-small cell lung cancer patients treated with immunotherapy. Clinical Nutrition ESPEN, 2021, 43, 64-75.	0.5	17
25	Dissecting the Role of Mesenchymal Stem Cells in Idiopathic Pulmonary Fibrosis: Cause or Solution. Frontiers in Pharmacology, 2021, 12, 692551.	1.6	17
26	Persistency of Mesenchymal Stromal/Stem Cells in Lungs. Frontiers in Cell and Developmental Biology, 2021, 9, 709225.	1.8	11
27	Microfragmented adipose tissue is associated with improved ex vivo performance linked to HOXB7 and b-FGF expression. Stem Cell Research and Therapy, 2021, 12, 481.	2.4	5
28	A Novel Three-Dimensional Culture Device Favors a Myelinating Morphology of Neural Stem Cell-Derived Oligodendrocytes. Frontiers in Cell and Developmental Biology, 2021, 9, 759982.	1.8	6
29	Mesenchymal stem cell immunomodulation: In pursuit of controlling COVID-19 related cytokine storm. Stem Cells, 2021, 39, 707-722.	1.4	42
30	Long survival of a young patient with Xp11.2 translocation metastatic clear cell renal carcinoma: case report and review of the literature. Tumori, 2021, 107, 030089162110492.	0.6	4
31	GD2 CAR T cells against human glioblastoma. Npj Precision Oncology, 2021, 5, 93.	2.3	43
32	The Evolving Role of FGFR2 Inhibitors in Intrahepatic Cholangiocarcinoma: From Molecular Biology to Clinical Targeting. Cancer Management and Research, 2021, Volume 13, 7747-7757.	0.9	7
33	TRAIL receptors are expressed in both malignant and stromal cells in pancreatic ductal adenocarcinoma. American Journal of Cancer Research, 2021, 11, 4500-4514.	1.4	0
34	The Release of Inflammatory Mediators from Acid-Stimulated Mesenchymal Stromal Cells Favours Tumour Invasiveness and Metastasis in Osteosarcoma. Cancers, 2021, 13, 5855.	1.7	14
35	Deepening the Knowledge of ROS1 Rearrangements in Non-Small Cell Lung Cancer: Diagnosis, Treatment, Resistance and Concomitant Alterations. International Journal of Molecular Sciences, 2021, 22, 12867.	1.8	13
36	A 3D Platform to Investigate Dynamic Cell-to-Cell Interactions Between Tumor Cells and Mesenchymal Progenitors. Frontiers in Cell and Developmental Biology, 2021, 9, 767253.	1.8	2

#	Article	IF	CITATIONS
37	Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors. Cancer Gene Therapy, 2020, 27, 558-570.	2.2	65
38	Arming Mesenchymal Stromal/Stem Cells Against Cancer: Has the Time Come?. Frontiers in Pharmacology, 2020, 11, 529921.	1.6	17
39	Modulating endothelial adhesion and migration impacts stem cell therapies efficacy. EBioMedicine, 2020, 60, 102987.	2.7	10
40	Autologous Fat Grafting for the Oral and Digital Complications of Systemic Sclerosis: Results of a Prospective Study. Aesthetic Plastic Surgery, 2020, 44, 1820-1832.	0.5	23
41	Emerging Neuroblastoma 3D In Vitro Models for Pre-Clinical Assessments. Frontiers in Immunology, 2020, 11, 584214.	2.2	11
42	ALDH Expression in Angiosarcoma of the Lung: A Potential Marker of Aggressiveness?. Frontiers in Medicine, 2020, 7, 544158.	1.2	4
43	Integrated intErventional bronchoscopy in the treatment of locally adVanced non-small lung cancER with central Malignant airway Obstructions: a multicentric REtrospective study (EVERMORE). Lung Cancer, 2020, 148, 40-47.	0.9	8
44	Genetic Engineering as a Strategy to Improve the Therapeutic Efficacy of Mesenchymal Stem/Stromal Cells in Regenerative Medicine. Frontiers in Cell and Developmental Biology, 2020, 8, 737.	1.8	52
45	Expression of ALDH and SOX-2 in Pulmonary Sclerosing Pnemocytoma (PSP) of the Lung: Is There a Meaning Behind?. Frontiers in Medicine, 2020, 7, 497.	1.2	3
46	Two Decades of Global Progress in Authorized Advanced Therapy Medicinal Products: An Emerging Revolution in Therapeutic Strategies. Frontiers in Cell and Developmental Biology, 2020, 8, 547653.	1.8	44
47	International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronavirus disease-19. Cytotherapy, 2020, 22, 482-485.	0.3	94
48	Adipose mesenchymal stromal/stem cells expanded by a GMP compatible protocol displayed improved adhesion on cancer cells in flow conditions. Annals of Translational Medicine, 2020, 8, 533-533.	0.7	8
49	Cancer Stem-Like Cells in a Case of an Inflammatory Myofibroblastic Tumor of the Lung. Frontiers in Oncology, 2020, 10, 673.	1.3	6
50	Mesenchymal stromal cells and their secreted extracellular vesicles as therapeutic tools for COVID-19 pneumonia?. Journal of Controlled Release, 2020, 325, 135-140.	4.8	28
51	Early efficacy evaluation of mesenchymal stromal cells (MSC) combined to biomaterials to treat long bone non-unions. Injury, 2020, 51, S63-S73.	0.7	32
52	A new bioactive glass with extremely high crystallization temperature and outstanding biological performance. Materials Science and Engineering C, 2020, 110, 110699.	3.8	22
53	On the in Vitro Biocompatibility Testing of Bioactive Glasses. Materials, 2020, 13, 1816.	1.3	14
54	Biliary tract cancer (BTC) in the elderly: A real-world tertiary cancer center experience Journal of Clinical Oncology, 2020, 38, 492-492.	0.8	1

#	Article	IF	CITATIONS
55	Overall survival in patients with lung adenocarcinoma harboring "niche―mutations: an observational study. Oncotarget, 2020, 11, 550-559.	0.8	7
56	CD44+/EPCAM+ cells detect a subpopulation of ALDHhigh cells in human non-small cell lung cancer: A chance for targeting cancer stem cells?. Oncotarget, 2020, 11, 1545-1555.	0.8	22
57	Inducible Caspase9-mediated suicide gene for MSC-based cancer gene therapy. Cancer Gene Therapy, 2019, 26, 11-16.	2.2	45
58	Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review. Stem Cells Translational Medicine, 2019, 8, 1135-1148.	1.6	182
59	Human Mesenchymal Stem Cell Combined with a New Strontium-Enriched Bioactive Glass: An ex-vivo Model for Bone Regeneration. Materials, 2019, 12, 3633.	1.3	25
60	Dissecting the Pharmacodynamics and Pharmacokinetics of MSCs to Overcome Limitations in Their Clinical Translation. Molecular Therapy - Methods and Clinical Development, 2019, 14, 1-15.	1.8	36
61	A Novel 3D In Vitro Platform for Pre-Clinical Investigations in Drug Testing, Gene Therapy, and Immuno-oncology. Scientific Reports, 2019, 9, 7154.	1.6	50
62	Defining mesenchymal stromal cell (MSC)â€derived small extracellular vesicles for therapeutic applications. Journal of Extracellular Vesicles, 2019, 8, 1609206.	5.5	400
63	Impact of HOXB7 overexpression on human adipose-derived mesenchymal progenitors. Stem Cell Research and Therapy, 2019, 10, 101.	2.4	16
64	Soluble TRAIL Armed Human MSC As Gene Therapy For Pancreatic Cancer. Scientific Reports, 2019, 9, 1788.	1.6	57
65	Cancer stem-neuroendocrine cells in an atypical carcinoid case report. Translational Lung Cancer Research, 2019, 8, 1157-1162.	1.3	7
66	Isolation and Identification of Cancer Stem-Like Cells in Adenocarcinoma and Squamous Cell Carcinoma of the Lung: A Pilot Study. Frontiers in Oncology, 2019, 9, 1394.	1.3	35
67	Response to Nature commentary "Clear up this stem-cell mess― Cytotherapy, 2019, 21, 1-2.	0.3	15
68	MSC-Delivered Soluble TRAIL and Paclitaxel as Novel Combinatory Treatment for Pancreatic Adenocarcinoma. Theranostics, 2019, 9, 436-448.	4.6	39
69	Feasibility and safety of treating non-unions in tibia, femur and humerus with autologous, expanded, bone marrow-derived mesenchymal stromal cells associated with biphasic calcium phosphate biomaterials in a multicentric, non-comparative trial. Biomaterials, 2019, 196, 100-108.	5.7	87
70	Correlating tumor-infiltrating lymphocytes and lung cancer stem cells: a cross-sectional study. Annals of Translational Medicine, 2019, 7, 619-619.	0.7	20
71	Acid microenvironment promotes cell survival of human bone sarcoma through the activation of cIAP proteins and NF-κB pathway. American Journal of Cancer Research, 2019, 9, 1127-1144.	1.4	10
72	Intratumoral Delivery of InterferonÎ ³ -Secreting Mesenchymal Stromal Cells Repolarizes Tumor-Associated Macrophages and Suppresses Neuroblastoma Proliferation In Vivo. Stem Cells, 2018, 36. 915-924.	1.4	55

#	Article	IF	CITATIONS
73	Mineralization by mesenchymal stromal cells is variously modulated depending on commercial platelet lysate preparations. Cytotherapy, 2018, 20, 335-342.	0.3	11
74	Extracellular vesicles released from mesenchymal stromal cells stimulate bone growth in osteogenesis imperfecta. Cytotherapy, 2018, 20, 62-73.	0.3	56
75	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
76	Cell, tissue and gene products with marketing authorization in 2018 worldwide. Cytotherapy, 2018, 20, 1401-1413.	0.3	87
77	Nivolumab-Induced Impressive Response of Refractory Pulmonary Sarcomatoid Carcinoma with Brain Metastasis. Case Reports in Oncology, 2018, 11, 615-621.	0.3	25
78	Dynamic Cultivation of Mesenchymal Stem Cell Aggregates. Bioengineering, 2018, 5, 48.	1.6	59
79	Extracellular vesicles derived from mesenchymal cells: perspective treatment for cutaneous wound healing in pediatrics. Regenerative Medicine, 2018, 13, 385-394.	0.8	42
80	Human Herpes simplex 1 virus infection of endometrial decidual tissue-derived MSC alters HLA-G expression and immunosuppressive functions. Human Immunology, 2018, 79, 800-808.	1.2	9
81	In vitro and in vivo discrepancy in inducing apoptosis by mesenchymal stromal cells delivering membrane-bound tumor necrosis factor–related apoptosis inducing ligand in osteosarcoma pre-clinical models. Cytotherapy, 2018, 20, 1037-1045.	0.3	14
82	Blocking Tumor-Educated MSC Paracrine Activity Halts Osteosarcoma Progression. Clinical Cancer Research, 2017, 23, 3721-3733.	3.2	150
83	Concise Review: An (Im)Penetrable Shield: How the Tumor Microenvironment Protects Cancer Stem Cells. Stem Cells, 2017, 35, 1123-1130.	1.4	41
84	Introduction and overview. Cytotherapy, 2017, 19, 1253-1255.	0.3	0
85	Safety Profile of Good Manufacturing Practice Manufactured Interferon γ-Primed Mesenchymal Stem/Stromal Cells for Clinical Trials. Stem Cells Translational Medicine, 2017, 6, 1868-1879.	1.6	56
86	Hematopoietic derived cells do not contribute to osteogenesis as osteoblasts. Bone, 2017, 94, 1-9.	1.4	15
87	Identification of a murine CD45â^'F4/80lo HSC-derived marrow endosteal cell associated with donor stem cell engraftment. Blood Advances, 2017, 1, 2667-2678.	2.5	1
88	An Alternative Approach to Investigate Biofilm in Medical Devices: A Feasibility Study. International Journal of Environmental Research and Public Health, 2017, 14, 1587.	1.2	17
89	Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma. Oncotarget, 2017, 8, 6914-6928.	0.8	38
90	GD2 expression in breast cancer. Oncotarget, 2017, 8, 31592-31600.	0.8	38

#	Article	IF	CITATIONS
91	Altered pH gradient at the plasma membrane of osteosarcoma cells is a key mechanism of drug resistance. Oncotarget, 2016, 7, 63408-63423.	0.8	78
92	Microglia are less proâ€inflammatory than myeloid infiltrates in the hippocampus of mice exposed to status epilepticus. Glia, 2016, 64, 1350-1362.	2.5	51
93	Cell therapies for pancreatic beta-cell replenishment. Italian Journal of Pediatrics, 2016, 42, 62.	1.0	13
94	Part 2: Making the "unproven―"proven― Cytotherapy, 2016, 18, 120-123.	0.3	6
95	TRAIL delivered by mesenchymal stromal/stem cells counteracts tumor development in orthotopic Ewing sarcoma models. International Journal of Cancer, 2016, 139, 2802-2811.	2.3	31
96	The Survey on Cellular and Engineered Tissue Therapies in Europe in 2013. Tissue Engineering - Part A, 2016, 22, 5-16.	1.6	11
97	Part 5: Unproven cell therapies and the commercialization of cell-based products. Cytotherapy, 2016, 18, 138-142.	0.3	12
98	President's letter on unproven cellular therapy. Cytotherapy, 2016, 18, 115.	0.3	0
99	Part 1: Defining unproven cellular therapies. Cytotherapy, 2016, 18, 117-119.	0.3	33
100	International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy, 2016, 18, 151-159.	0.3	400
101	Potency Biomarker Signature Genes from Multiparametric Osteogenesis Assays: Will cGMP Human Bone Marrow Mesenchymal Stromal Cells Make Bone?. PLoS ONE, 2016, 11, e0163629.	1.1	24
102	Resistance to neoplastic transformation of <i>ex-vivo</i> expanded human mesenchymal stromal cells after exposure to supramaximal physical and chemical stress. Oncotarget, 2016, 7, 77416-77429.	0.8	12
103	Tumor Stroma Manipulation By MSC. Current Drug Targets, 2016, 17, 1111-1126.	1.0	11
104	Science, ethics and communication remain essential for the success of cell-based therapies. Brain Circulation, 2016, 2, 146.	0.7	7
105	Mesenchymal stromal cells for cutaneous wound healing in a rabbit model: pre-clinical study applicable in the pediatric surgical setting. Journal of Translational Medicine, 2015, 13, 219.	1.8	62
106	Impressive Response to Dose-Dense Chemotherapy in a Patient with NUT Midline Carcinoma. American Journal of Case Reports, 2015, 16, 424-429.	0.3	20
107	Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Medicine, 2015, 13, 186.	2.3	109
108	Genomic and functional comparison of mesenchymal stromal cells prepared using two isolation methods. Cytotherapy, 2015, 17, 262-270.	0.3	17

#	Article	IF	CITATIONS
109	CD271 Mediates Stem Cells to Early Progeny Transition in Human Epidermis. Journal of Investigative Dermatology, 2015, 135, 786-795.	0.3	27
110	Carbonic anhydrase IX inhibition is an effective strategy for osteosarcoma treatment. Expert Opinion on Therapeutic Targets, 2015, 19, 1593-1605.	1.5	28
111	<i>In vitro</i> differentiation of human amniotic epithelial cells into insulin-producing 3D spheroids. International Journal of Immunopathology and Pharmacology, 2015, 28, 390-402.	1.0	31
112	Positioning a Scientific Community on Unproven Cellular Therapies: The 2015 International Society for Cellular Therapy Perspective. Cytotherapy, 2015, 17, 1663-1666.	0.3	44
113	Mesenchymal Progenitors Expressing <scp>TRAIL</scp> Induce Apoptosis in Sarcomas. Stem Cells, 2015, 33, 859-869.	1.4	46
114	Mesenchymal Progenitors Aging Highlights a miR-196 Switch Targeting HOXB7 as Master Regulator of Proliferation and Osteogenesis. Stem Cells, 2015, 33, 939-950.	1.4	56
115	Effects of a Ceramic Biomaterial on Immune Modulatory Properties and Differentiation Potential of Human Mesenchymal Stromal Cells of Different Origin. Tissue Engineering - Part A, 2015, 21, 767-781.	1.6	15
116	A novel anti-GD2/4-1BB chimeric antigen receptor triggers neuroblastoma cell killing. Oncotarget, 2015, 6, 24884-24894.	0.8	61
117	Detection of microparticles from human red blood cells by multiparametric flow cytometry. Blood Transfusion, 2015, 13, 274-80.	0.3	38
118	Suppression of Invasion and Metastasis of Triple-Negative Breast Cancer Lines by Pharmacological or Genetic Inhibition of Slug Activity. Neoplasia, 2014, 16, 1047-1058.	2.3	78
119	Mesenchymal Stem Cell Biodistribution, Migration, and Homing <i>In Vivo</i> . Stem Cells International, 2014, 2014, 1-2.	1.2	34
120	Transportation Conditions for Prompt Use of <i>Ex Vivo</i> Expanded and Freshly Harvested Clinical-Grade Bone Marrow Mesenchymal Stromal/Stem Cells for Bone Regeneration. Tissue Engineering - Part C: Methods, 2014, 20, 239-251.	1.1	39
121	Surrounding Pancreatic Adenocarcinoma by Killer Mesenchymal Stromal/Stem Cells. Human Gene Therapy, 2014, 25, 406-407.	1.4	6
122	The puzzling situation of hospital exemption for advanced therapy medicinal products in Europe and stakeholders' concerns. Cytotherapy, 2014, 16, 1597-1600.	0.3	42
123	cGMP-Compliant Transportation Conditions for a Prompt Therapeutic Use of Marrow Mesenchymal Stromal/Stem Cells. Methods in Molecular Biology, 2014, 1283, 109-122.	0.4	3
124	A novel function for amniotic fluid: Original or authentic?. Journal of the Chinese Medical Association, 2014, 77, 601-602.	0.6	1
125	Rare Breast Cancer Subtypes: Histological, Molecular, and Clinical Peculiarities. Oncologist, 2014, 19, 805-813.	1.9	132
126	Role of mesenchymal stem cells in osteosarcoma and metabolic reprogramming of tumor cells. Oncotarget, 2014, 5, 7575-7588.	0.8	121

#	Article	IF	CITATIONS
127	Adipose stromal/stem cells assist fat transplantation reducing necrosis and increasing graft performance. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 1274-1289.	2.2	56
128	Proinflammatory stimuli induce galectinâ€9 in human mesenchymal stromal cells to suppress <scp>T</scp> â€eell proliferation. European Journal of Immunology, 2013, 43, 2741-2749.	1.6	92
129	Mesenchymal stromal/stem cells markers in the human bone marrow. Cytotherapy, 2013, 15, 292-306.	0.3	93
130	Improved isolation and expansion of bone marrow mesenchymal stromal cells using a novel marrow filter device. Cytotherapy, 2013, 15, 146-153.	0.3	52
131	Delayed Marrow Infusion in Mice Enhances Hematopoietic and Osteopoietic Engraftment by Facilitating Transient Expansion of the Osteoblastic Niche. Biology of Blood and Marrow Transplantation, 2013, 19, 1566-1573.	2.0	6
132	Transplanted Murine Long-term Repopulating Hematopoietic Cells Can Differentiate to Osteoblasts in the Marrow Stem Cell Niche. Molecular Therapy, 2013, 21, 1224-1231.	3.7	14
133	Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a jointÂstatement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular TherapyÂ(ISCT). Cytotherapy, 2013, 15, 641-648.	0.3	1,469
134	Isolation, Characterization, and Transduction of Endometrial Decidual Tissue Multipotent Mesenchymal Stromal/Stem Cells from Menstrual Blood. BioMed Research International, 2013, 2013, 1-14.	0.9	80
135	Inhibiting Interactions of Lysine Demethylase LSD1 with Snail/Slug Blocks Cancer Cell Invasion. Cancer Research, 2013, 73, 235-245.	0.4	117
136	IGF-1-mediated osteoblastic niche expansion enhances long-term hematopoietic stem cell engraftment after murine bone marrow transplantation. Stem Cells, 2013, 31, 2193-2204.	1.4	51
137	Discordance in receptor status between primary and recurrent breast cancer has a prognostic impact: a single-Institution analysis. Annals of Oncology, 2013, 24, 101-108.	0.6	145
138	Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood, 2013, 121, 5238-5249.	0.6	129
139	Predictors of human epidermal growth factor receptor 2 fluorescence in-situ hybridisation amplification in immunohistochemistry score 2+ infiltrating breast cancer: a single institution analysis. Journal of Clinical Pathology, 2012, 65, 503-506.	1.0	13
140	Clinical Perspectives of Mesenchymal Stem Cells. Stem Cells International, 2012, 2012, 1-3.	1.2	16
141	Cardiorenal Syndrome Type 1 May Be Immunologically Mediated: A Pilot Evaluation of Monocyte Apoptosis. CardioRenal Medicine, 2012, 2, 33-42.	0.7	45
142	Transplanted bone marrow mononuclear cells and MSCs impart clinical benefit to children with osteogenesis imperfecta through different mechanisms. Blood, 2012, 120, 1933-1941.	0.6	118
143	Sarcomas as a mise en abyme of mesenchymal stem cells: Exploiting interrelationships for cell mediated anticancer therapy. Cancer Letters, 2012, 325, 1-10.	3.2	7
144	MSC and Tumors: Homing, Differentiation, and Secretion Influence Therapeutic Potential. Advances in Biochemical Engineering/Biotechnology, 2012, 130, 209-266.	0.6	44

#	Article	IF	CITATIONS
145	<i>In vitro</i> antiâ€myeloma activity of <scp>TRAIL</scp> â€expressing adiposeâ€derived mesenchymal stem cells. British Journal of Haematology, 2012, 157, 586-598.	1.2	46
146	Cytokine-induced osteopoietic differentiation of transplanted marrow cells. Blood, 2011, 118, 2358-2361.	0.6	3
147	Bone marrow derived mesenchymal stem/stromal cells transduced with full length human TRAIL repress the growth of rhabdomyosarcoma cells in vitro. Haematologica, 2011, 96, e21-e22.	1.7	14
148	Mesenchymal Stem Cells: A New Promise in Anticancer Therapy. Stem Cells and Development, 2011, 20, 1-10.	1.1	47
149	Understanding tumor-stroma interplays for targeted therapies by armed mesenchymal stromal progenitors: the Mesenkillers. American Journal of Cancer Research, 2011, 1, 787-805.	1.4	23
150	Osteopoietic engraftment after bone marrow transplantation: Effect of inbred strain of mice. Experimental Hematology, 2010, 38, 836-844.	0.2	6
151	Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood, 2010, 116, 3770-3779.	0.6	224
152	GMP-manufactured density gradient media for optimized mesenchymal stromal/stem cell isolation and expansion. Cytotherapy, 2010, 12, 466-477.	0.3	59
153	Toward Cell Therapy Using Placenta-Derived Cells: Disease Mechanisms, Cell Biology, Preclinical Studies, and Regulatory Aspects at the Round Table. Stem Cells and Development, 2010, 19, 143-154.	1.1	127
154	Adipose-Derived Mesenchymal Stem Cells as Stable Source of Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Delivery for Cancer Therapy. Cancer Research, 2010, 70, 3718-3729.	0.4	226
155	Getting beneath the skin to understand MSC complexity. Cytotherapy, 2010, 12, 438-439.	0.3	1
156	IGF1-Mediated Osteoblastic Niche Expansion After Marrow Ablation Enhances Long-Term Hematopoietic Stem Cell Engraftment and Hematopoietic Reconstitution After Bone Marrow Transplantation. Blood, 2010, 116, 557-557.	0.6	0
157	Cell therapy for disorders of bone. Cytotherapy, 2009, 11, 3-17.	0.3	30
158	Heterogeneity of Multipotent Mesenchymal Stromal Cells: From Stromal Cells to Stem Cells and Vice Versa. Transplantation, 2009, 87, S36-S42.	0.5	63
159	Response: Optimizing the niche conditions for maximal stem cell engraftment: human and animal model data. Blood, 2009, 114, 5406-5407.	0.6	1
160	Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood, 2009, 114, 2333-2343.	0.6	178
161	Transplantable marrow osteoprogenitors engraft in discrete saturable sites in the marrow microenvironment. Experimental Hematology, 2008, 36, 360-368.	0.2	22
162	Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation. Blood Cells, Molecules, and Diseases, 2008, 40, 25-32.	0.6	171

#	Article	IF	CITATIONS
163	How do mesenchymal stromal cells exert their therapeutic benefit?. Cytotherapy, 2008, 10, 771-774.	0.3	126
164	Epidermal Growth Factor Receptor (EGFR) High Gene Copy Number and Activating Mutations in Lung Adenocarcinomas Are Not Consistently Accompanied by Positivity for EGFR Protein by Standard Immunohistochemistry. Journal of Molecular Diagnostics, 2008, 10, 160-168.	1.2	58
165	Donor cell–derived osteopoiesis originates from a self-renewing stem cell with a limited regenerative contribution after transplantation. Blood, 2008, 111, 4386-4391.	0.6	53
166	Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood, 2007, 109, 4245-4248.	0.6	245
167	CD2+ Selected Mesenchymal Stromal Cells (MSCs) Demonstrate a More Robust Proliferation and Differentiation Potential Compared to Unselected Cells Blood, 2007, 110, 1919-1919.	0.6	0
168	Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM. Cytotherapy, 2006, 8, 437-444.	0.3	221
169	Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, 8, 315-317.	0.3	13,839
170	Proteasome inhibitors sensitize colon carcinoma cells to TRAIL-induced apoptosis via enhanced release of smac/DIABLO from the mitochondria. Pathology and Oncology Research, 2006, 12, 133-142.	0.9	32
171	Transcriptional Link between Blood and Bone: the Stem Cell Leukemia Gene and Its +19 Stem Cell Enhancer Are Active in Bone Cells. Molecular and Cellular Biology, 2006, 26, 2615-2625.	1.1	17
172	Trophoblast Stem Cells Rescue Placental Defect in SOCS3-deficient Mice. Journal of Biological Chemistry, 2006, 281, 11444-11445.	1.6	23
173	Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 2005, 7, 393-395.	0.3	1,661
174	Transgenic mice with pancellular enhanced green fluorescent protein expression in primitive hematopoietic cells and all blood cell progeny. Genesis, 2005, 42, 17-22.	0.8	26
175	Hematopoietic cells and osteoblasts are derived from a common marrow progenitor after bone marrow transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11761-11766.	3.3	150
176	Isolation and Expansion of Functional Differentiating Mesenchymal Stem Cells with a Serum Deprived Medium Blood, 2004, 104, 2852-2852.	0.6	0
177	A Role for SCL in Developing Bone? the SCL +19 Core Enhancer Targets Expression to Cells of Developing Bone, Osteocytes, Chondrocytes and Bone Lining Cells Blood, 2004, 104, 4199-4199.	0.6	0
178	Development and functional characterization of human bone marrow mesenchymal cells immortalized by enforced expression of telomerase. British Journal of Haematology, 2003, 120, 846-849.	1.2	118
179	Functional and immunophenotypic characteristics of isolated CD105+ and fibroblast+ stromal cells from AML: implications for their plasticity along endothelial lineage. Cytotherapy, 2003, 5, 66-79.	0.3	22
180	Angiogenesis in multiple myeloma: correlation between in vitro endothelial colonies growth (CFU-En) and clinical–biological features. Leukemia, 2001, 15, 171-176.	3.3	29

#	Article	IF	CITATIONS
181	CD34+ cell subsets and long-term culture colony-forming cells evaluated on both autologous and normal bone marrow stroma predict long-term hematopoietic engraftment in patients undergoing autologous peripheral blood stem cell transplantation. Experimental Hematology, 2001, 29, 1484-1493.	0.2	29
182	PCR with degenerate primers for highly conserved DNA polymerase gene of the herpesvirus family shows neither human herpesvirus 8 nor a related variant in bone marrow stromal cells from multiple myeloma patients. , 2000, 86, 76-82.		14
183	Prolonged remission state of refractory adult onset Still's disease following CD34-selected autologous peripheral blood stem cell transplantation. Bone Marrow Transplantation, 2000, 25, 1307-1310.	1.3	18
184	Lack of confirmation of an association between HTLV-I infection and myelodysplastic syndrome. British Journal of Haematology, 1999, 105, 1146-1147.	1.2	5
185	Current Status of Mesenchymal Stem/Stromal Cells for Treatment of Neurological Diseases. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	8