
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4314085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current hurdles to the translation of nanomedicines from bench to the clinic. Drug Delivery and Translational Research, 2022, 12, 500-525.	5.8	92
2	Editorial: Clinically-relevant and predictive cancer models for nanomedicine evaluation. Advanced Drug Delivery Reviews, 2022, 183, 114140.	13.7	0
3	Nanomedicines as Multifunctional Modulators of Melanoma Immune Microenvironment. Advanced Therapeutics, 2021, 4, 2000147.	3.2	2
4	A demanding path from iPSCs toward pancreatic \hat{I}^2 - and $\hat{I}\pm$ -cells. , 2021, , 227-256.		0
5	Special Issue "A perspective of drug delivery and translational research in Europe― Drug Delivery and Translational Research, 2021, 11, 343-344.	5.8	1
6	Preclinical models and technologies to advance nanovaccine development. Advanced Drug Delivery Reviews, 2021, 172, 148-182.	13.7	18
7	Selenium Nanoparticles for Biomedical Applications: From Development and Characterization to Therapeutics. Advanced Healthcare Materials, 2021, 10, e2100598.	7.6	182
8	Abstract 714: From cancer to COVID-19- development of a dendritic cell-targeted nano-vaccine for prevention and therapy of COVID-19. , 2021, , .		1
9	Design of Experiments to Achieve an Efficient Chitosan-Based DNA Vaccine Delivery System. Pharmaceutics, 2021, 13, 1369.	4.5	13
10	Intravital visualization of interactions of murine Peyer's patchâ€resident dendritic cells with M cells. European Journal of Immunology, 2020, 50, 537-547.	2.9	9
11	Immune-mediated approaches against COVID-19. Nature Nanotechnology, 2020, 15, 630-645.	31.5	260
12	The solid progress of nanomedicine. Drug Delivery and Translational Research, 2020, 10, 726-729.	5.8	91
13	Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators. Nature Nanotechnology, 2019, 14, 891-901.	31.5	167
14	Structural insights and binding analysis for determining the molecular bases for programmed cell death protein ligand-1 inhibition. MedChemComm, 2019, 10, 1810-1818.	3.4	5
15	Challenges in the implementation of MIRIBEL criteria on nanobiomed manuscripts. Nature Nanotechnology, 2019, 14, 627-628.	31.5	14
16	Functionalized branched polymers: promising immunomodulatory tools for the treatment of cancer and immune disorders. Materials Horizons, 2019, 6, 1956-1973.	12.2	44
17	Nanotechnology is an important strategy for combinational innovative chemo-immunotherapies against colorectal cancer. Journal of Controlled Release, 2019, 307, 108-138.	9.9	49
18	DC Respond to Cognate T Cell Interaction in the Antigen-Challenged Lymph Node. Frontiers in Immunology, 2019, 10, 863.	4.8	16

#	Article	IF	CITATIONS
19	Computerâ€aided drug design in new druggable targets for the next generation of immuneâ€oncology therapies. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1397.	14.6	6
20	AKT2 siRNA delivery with amphiphilic-based polymeric micelles show efficacy against cancer stem cells. Drug Delivery, 2018, 25, 961-972.	5.7	32
21	Nanoparticulate vaccine inhibits tumor growth via improved T cell recruitment into melanoma and huHER2 breast cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 835-847.	3.3	17
22	Highly Efficient Energy Transfer Cassettes by Assembly of Boronic Acid Derived Salicylidenehydrazone Complexes. ChemPhotoChem, 2018, 2, 1038-1045.	3.0	5
23	α-Galactosylceramide and peptide-based nano-vaccine synergistically induced a strong tumor suppressive effect in melanoma. Acta Biomaterialia, 2018, 76, 193-207.	8.3	27
24	Structure–Function Analysis of Immune Checkpoint Receptors to Guide Emerging Anticancer Immunotherapy. Journal of Medicinal Chemistry, 2018, 61, 10957-10975.	6.4	30
25	Functional Moieties for Intracellular Traffic of Nanomaterials. , 2018, , 399-448.		4
26	Cisplatin-Membrane Interactions and Their Influence on Platinum Complexes Activity and Toxicity. Frontiers in Physiology, 2018, 9, 1898.	2.8	78
27	Rational Design of a siRNA Delivery System: ALOX5 and Cancer Stem Cells as Therapeutic Targets. Precision Nanomedicine, 2018, 1, 86-105.	0.8	6
28	Rational design of nanoparticles towards targeting antigen-presenting cells and improved T cell priming. Journal of Controlled Release, 2017, 258, 182-195.	9.9	79
29	Modular Assembly of Reversible Multivalent Cancerâ€Cellâ€Targeting Drug Conjugates. Angewandte Chemie - International Edition, 2017, 56, 9346-9350.	13.8	29
30	Modular Assembly of Reversible Multivalent Cancerâ€Cellâ€Targeting Drug Conjugates. Angewandte Chemie, 2017, 129, 9474-9478.	2.0	6
31	Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs. Nanomedicine, 2017, 12, 2581-2596.	3.3	96
32	Two-step polymer- and liposome-enzyme prodrug therapies for cancer: PDEPT and PELT concepts and future perspectives. Advanced Drug Delivery Reviews, 2017, 118, 52-64.	13.7	26
33	Practical computational toolkits for dendrimers and dendrons structure design. Journal of Computer-Aided Molecular Design, 2017, 31, 817-827.	2.9	8
34	Nanoparticle impact on innate immune cell pattern-recognition receptors and inflammasomes activation. Seminars in Immunology, 2017, 34, 3-24.	5.6	66
35	Poly-glutamic dendrimer-based conjugates for cancer vaccination – a computational design for targeted delivery of antigens. Journal of Drug Targeting, 2017, 25, 873-880.	4.4	9
36	Poly(lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomaterialia, 2017, 48, 41-57.	8.3	96

#	Article	IF	CITATIONS
37	Regulatory Development of Nanotechnology-Based Vaccines. , 2017, , 393-410.		5
38	Rational design of novel, fluorescent, tagged glutamic acid dendrimers with different terminal groups and in silico analysis of their properties. International Journal of Nanomedicine, 2017, Volume 12, 7053-7073.	6.7	15
39	Polymer-Based Nanoparticles as Modern Vaccine Delivery Systems. , 2017, , 185-203.		9
40	A Three-Component Assembly Promoted by Boronic Acids Delivers a Modular Fluorophore Platform (BASHY Dyes). Chemistry - A European Journal, 2016, 22, 1537-1537.	3.3	0
41	Nanotechnology-based immunotherapeutic approach for tumour eradication. European Journal of Cancer, 2016, 61, S214.	2.8	Ο
42	Optimization of protein loaded PLGA nanoparticle manufacturing parameters following a quality-by-design approach. RSC Advances, 2016, 6, 104502-104512.	3.6	7
43	Modulation of Dendritic Cells by Nanotechnology-Based Immunotherapeutic Strategies. Journal of Biomedical Nanotechnology, 2016, 12, 405-434.	1.1	13
44	A Threeâ€Component Assembly Promoted by Boronic Acids Delivers a Modular Fluorophore Platform (BASHY Dyes). Chemistry - A European Journal, 2016, 22, 1631-1637.	3.3	56
45	Targeting AKT2 signalling events: improving therapeutic outcomes through cancer stemness modulation. Annals of Oncology, 2015, 26, ii25.	1.2	Ο
46	Regulatory aspects on nanomedicines. Biochemical and Biophysical Research Communications, 2015, 468, 504-510.	2.1	256
47	In vivo delivery of peptides and Toll-like receptor ligands by mannose-functionalized polymeric nanoparticles induces prophylactic and therapeutic anti-tumor immune responses in a melanoma model. Journal of Controlled Release, 2015, 198, 91-103.	9.9	126
48	EMT Blockage Strategies: Targeting Akt Dependent Mechanisms for Breast Cancer Metastatic Behaviour Modulation. Current Gene Therapy, 2015, 15, 300-312.	2.0	38
49	Translational Peptide-associated Nanosystems: Promising Role as Cancer Vaccines. Current Topics in Medicinal Chemistry, 2015, 16, 291-313.	2.1	2
50	Molecular Modeling to Study Dendrimers for Biomedical Applications. Molecules, 2014, 19, 20424-20467.	3.8	66
51	Development of functionalized nanoparticles for vaccine delivery to dendritic cells: a mechanistic approach. Nanomedicine, 2014, 9, 2639-2656.	3.3	37
52	Regulatory Aspects of Oncologicals: Nanosystems Main Challenges. Advances in Delivery Science and Technology, 2014, , 425-452.	0.4	14
53	Development of a Novel Nanoparticle-based Therapeutic Vaccine for Breast Cancer Immunotherapy. Procedia in Vaccinology, 2014, 8, 62-67.	0.4	6
54	Characterisation of DM-β-cyclodextrin:prednisolone complexes and their formulation as eye drops. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 80, 155-164.	1.6	7

#	Article	IF	CITATIONS
55	Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Frontiers in Chemistry, 2014, 2, 105.	3.6	147
56	Immune system targeting by biodegradable nanoparticles for cancer vaccines. Journal of Controlled Release, 2013, 168, 179-199.	9.9	212
57	Development of a novel mucosal vaccine against strangles by supercritical enhanced atomization spray-drying of Streptococcus equi extracts and evaluation in a mouse model. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 392-400.	4.3	16
58	Chapter 3.1. Nanocarriers Overcoming the Nasal Barriers: Physiological Considerations and Mechanistic Issues. RSC Drug Discovery Series, 2012, , 117-132.	0.3	8
59	Surface modified polymeric nanoparticles for immunisation against equine strangles. International Journal of Pharmaceutics, 2010, 390, 25-31.	5.2	12
60	Incorporation of tocopherol acetate-containing particles in acrylic bone cement. Journal of Microencapsulation, 2010, 27, 533-541.	2.8	12
61	The enhancement of the immune response against S. equi antigens through the intranasal administration of poly-É>-caprolactone-based nanoparticles. Biomaterials, 2009, 30, 879-891.	11.4	84
62	Antibody and cytokine-associated immune responses to S. equi antigens entrapped in PLA nanospheres. Biomaterials, 2009, 30, 5161-5169.	11.4	28
63	New approach on the development of a mucosal vaccine against strangles: Systemic and mucosal immune responses in a mouse model. Vaccine, 2009, 27, 1230-1241.	3.8	31
64	Streptococcus equi antigens adsorbed onto surface modified poly-É›-caprolactone microspheres induce humoral and cellular specific immune responses. Vaccine, 2008, 26, 4168-4177.	3.8	39
65	Aliphatic Polyesters: Particulate Vaccine Delivery. , 0, , 147-185.		0