
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4314023/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Breeding crops to feed 10 billion. Nature Biotechnology, 2019, 37, 744-754.	17.5	577
2	Whole-genome sequencing reveals untapped genetic potential in Africa's indigenous cereal crop sorghum. Nature Communications, 2013, 4, 2320.	12.8	405
3	Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis, 1997, 18, 1524-1528.	2.4	329
4	Applications and potential of genome editing in crop improvement. Genome Biology, 2018, 19, 210.	8.8	286
5	Assessment of genome origins and genetic diversity in the genus <i>Eleusine</i> with DNA markers. Genome, 1995, 38, 757-763.	2.0	179
6	The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Reports, 1991, 9, 671-675.	5.6	168
7	Comparison of DNA Marker Technologies in Characterizing Plant Genome Diversity: Variability in Chinese Sorghums. Crop Science, 1996, 36, 1669-1676.	1.8	152
8	Trends in the production of cellulose nanofibers from non-wood sources. Cellulose, 2020, 27, 575-593.	4.9	151
9	Identification of QTL for sugar-related traits in a sweetÂ×Âgrain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Molecular Breeding, 2008, 22, 367-384.	2.1	138
10	VERNALIZATION1 Modulates Root System Architecture in Wheat and Barley. Molecular Plant, 2018, 11, 226-229.	8.3	118
11	Prediction of hybrid performance in grain sorghum using RFLP markers. Theoretical and Applied Genetics, 2003, 106, 559-567.	3.6	109
12	Highly efficient sorghum transformation. Plant Cell Reports, 2012, 31, 999-1007.	5.6	96
13	Random amplified polymorphic DNA (RAPD) detection of dwarf off-types in micropropagated Cavendish (Musa spp. AAA) bananas. Plant Cell Reports, 1996, 16, 118-123.	5.6	94
14	Transgenic Plants for Abiotic Stress Resistance. , 2010, , 67-132.		90
15	An assessment of the genetic relationship between sweet and grain sorghums, within Sorghum bicolor ssp. bicolor (L.) Moench, using AFLP markers. Euphytica, 2007, 157, 161-176.	1.2	83
16	Upâ€regulation of lipid biosynthesis increases the oil content in leaves of <i>Sorghum bicolor</i> . Plant Biotechnology Journal, 2019, 17, 220-232.	8.3	75
17	Largeâ€scale GWAS in sorghum reveals common genetic control of grain size among cereals. Plant Biotechnology Journal, 2020, 18, 1093-1105.	8.3	72
18	Genomic interventions for sustainable agriculture. Plant Biotechnology Journal, 2020, 18, 2388-2405.	8.3	71

#	Article	IF	CITATIONS
19	Cold tolerance in rice varieties at different growth stages. Crop and Pasture Science, 2009, 60, 328.	1.5	69
20	Somaclonal Variation in Rice ̵2 Drought Tolerance and Other Agronomic Characters. Australian Journal of Botany, 1995, 43, 201.	0.6	66
21	Two genetic linkage maps of mungbean using RFLP and RAPD markers. Australian Journal of Agricultural Research, 2000, 51, 415.	1.5	64
22	Rapid phenotyping for adultâ€plant resistance to stripe rust in wheat. Plant Breeding, 2012, 131, 54-61.	1.9	63
23	Whole-Genome Analysis of Candidate genes Associated with Seed Size and Weight in Sorghum bicolor Reveals Signatures of Artificial Selection and Insights into Parallel Domestication in Cereal Crops. Frontiers in Plant Science, 2017, 8, 1237.	3.6	59
24	The Macroecology of Airborne Pollen in Australian and New Zealand Urban Areas. PLoS ONE, 2014, 9, e97925.	2.5	58
25	The investigation of optimal bombardment parameters for transient and stable transgene expression in Sorghum. In Vitro Cellular and Developmental Biology - Plant, 2001, 37, 341-348.	2.1	53
26	Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment. Methods in Molecular Biology, 2019, 1931, 169-183.	0.9	53
27	The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum. Plant Biotechnology Journal, 2017, 15, 1387-1396.	8.3	52
28	Effect of a gibberellin-biosynthesis inhibitor treatment on the physicochemical properties of sorghum starch. Journal of Cereal Science, 2011, 53, 328-334.	3.7	51
29	The plasticity of NBS resistance genes in sorghum is driven by multiple evolutionary processes. BMC Plant Biology, 2014, 14, 253.	3.6	49
30	QTL analysis of ergot resistance in sorghum. Theoretical and Applied Genetics, 2008, 117, 369-382.	3.6	46
31	Identification of quantitative trait loci for resistance to two species of root-lesion nematode (Pratylenchus thornei and P. neglectus) in wheat. Australian Journal of Agricultural Research, 2005, 56, 345.	1.5	45
32	A QTL controlling low temperature induced spikelet sterility at booting stage in rice. Euphytica, 2010, 176, 291-301.	1.2	44
33	SorGSD: a sorghum genome SNP database. Biotechnology for Biofuels, 2016, 9, 6.	6.2	44
34	Title is missing!. Euphytica, 1998, 102, 1-7.	1.2	43
35	Resistance to yellow spot in wheat grown under accelerated growth conditions. Euphytica, 2016, 209, 693-707.	1.2	43
36	Morphological, molecular and cytological analyses of Carica papaya×C. cauliflora interspecific hybrids. Theoretical and Applied Genetics, 1997, 95, 224-229.	3.6	42

#	Article	IF	CITATIONS
37	Differences in grass pollen allergen exposure across Australia. Australian and New Zealand Journal of Public Health, 2015, 39, 51-55.	1.8	42

38 Development and characterization of polymorphic microsatellite markers in taro (Colocasia) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 T

39	Allelic variation at a single gene increases food value in a drought-tolerant staple cereal. Nature Communications, 2013, 4, 1483.	12.8	41
40	Into the vault of the Vavilov wheats: old diversity for new alleles. Genetic Resources and Crop Evolution, 2017, 64, 531-544.	1.6	41
41	Interpretation of randomly amplified polymorphic DNA marker data for fingerprinting sweet potato (Ipomoea batatas L.) genotypes. Theoretical and Applied Genetics, 1994, 88-88, 332-336.	3.6	40
42	Grain Sorghum Proteomics: Integrated Approach toward Characterization of Endosperm Storage Proteins in Kafirin Allelic Variants. Journal of Agricultural and Food Chemistry, 2014, 62, 9819-9831.	5.2	40
43	Hotter, drier, CRISPR: the latest edit on climate change. Theoretical and Applied Genetics, 2021, 134, 1691-1709.	3.6	40
44	Allelic variation of the β-, γ- and β-kafirin genes in diverse Sorghum genotypes. Theoretical and Applied Genetics, 2010, 121, 1227-1237.	3.6	39
45	Whole Genome Sequencing Reveals Potential New Targets for Improving Nitrogen Uptake and Utilization in Sorghum bicolor. Frontiers in Plant Science, 2016, 7, 1544.	3.6	39
46	Highâ€ŧhroughput detection and screening of plants modified by gene editing using quantitative realâ€ŧime polymerase chain reaction. Plant Journal, 2018, 95, 557-567.	5.7	39
47	Genotypic variation of iron partitioning in rice grain. Journal of the Science of Food and Agriculture, 2007, 87, 2049-2054.	3.5	38
48	Iron-fortified parboiled rice – A novel solution to high iron density in rice-based diets. Food Chemistry, 2008, 110, 390-398.	8.2	38
49	Domestication and the storage starch biosynthesis pathway: signatures of selection from a whole sorghum genome sequencing strategy. Plant Biotechnology Journal, 2016, 14, 2240-2253.	8.3	38
50	An Improved Embryo-Rescue Protocol for a Carica Interspecific Hybrid. Australian Journal of Botany, 1996, 44, 343.	0.6	36
51	IRAP, a retrotransposon-based marker system for the detection of somaclonal variation in barley. Molecular Breeding, 2011, 27, 193-206.	2.1	36
52	Total transcriptome, proteome, and allergome of Johnson grass pollen, which is important for allergic rhinitis in subtropical regions. Journal of Allergy and Clinical Immunology, 2015, 135, 133-142.	2.9	36
53	Segregation Distortion for Seed Testa Color in Mungbean (Vigna radiata L. Wilcek). Journal of Heredity, 2004, 95, 532-535.	2.4	35
54	Regional and seasonal variation in airborne grass pollen levels between cities of Australia and New Zealand. Aerobiologia, 2016, 32, 289-302.	1.7	34

#	Article	IF	CITATIONS
55	In vitro Approaches to Extending the Host-Range of Agrobacterium for Plant Transformation. Australian Journal of Botany, 1992, 40, 751.	0.6	32
56	Screening Carica papaya × C. cauliflora hybrids for resistance to papaya ringspot virusâ€ŧype P. Plant Pathology, 1997, 46, 837-841.	2.4	32
57	Genetic analysis of resistance to root-lesion nematode (Pratylenchus thornei) in wheat. Plant Breeding, 2004, 123, 209-212.	1.9	32
58	A robust tissue culture system for sorghum [Sorghum bicolor (L.) Moench]. South African Journal of Botany, 2015, 98, 157-160.	2.5	32
59	Transgenic expression of flavanone 3â€hydroxylase redirects flavonoid biosynthesis and alleviates anthracnose susceptibility in sorghum. Plant Biotechnology Journal, 2020, 18, 2170-2172.	8.3	30
60	Homologues of the maize rust resistance gene Rp1-D are genetically associated with a major rust resistance QTL in sorghum. Theoretical and Applied Genetics, 2004, 109, 875-883.	3.6	29
61	Molecular Characterization of a Novel Methionine-Rich Î-Kafirin Seed Storage Protein Gene in Sorghum (Sorghum bicolorL.). Cereal Chemistry, 2005, 82, 706-710.	2.2	29
62	Diurnal changes in Sorghum leaf starch molecular structure. Plant Science, 2015, 239, 147-154.	3.6	29
63	Maximizing Genetic, Morphological, and Geographic Diversity in a Core Collection of Australian Bermudagrass. Crop Science, 2012, 52, 879-889.	1.8	28
64	Technological perspectives for plant breeding. Theoretical and Applied Genetics, 2019, 132, 555-557.	3.6	27
65	Effect of Grain Morphology on Degree of Milling and Iron Loss in Rice. Cereal Chemistry, 2007, 84, 384-388.	2.2	26
66	Heterosis in locally adapted sorghum genotypes and potential of hybrids for increased productivity in contrasting environments in Ethiopia. Crop Journal, 2016, 4, 479-489.	5.2	26
67	Genetic mapping of the Lablab purpureus genome suggests the presence of 'cuckoo' gene(s) in this species. Theoretical and Applied Genetics, 2000, 100, 866-871.	3.6	25
68	Insights into Sorghum Starch Biosynthesis from Structure Changes Induced by Different Growth Temperatures. Cereal Chemistry, 2013, 90, 223-230.	2.2	24
69	Impacts of Kafirin Allelic Diversity, Starch Content, and Protein Digestibility on Ethanol Conversion Efficiency in Grain Sorghum. Cereal Chemistry, 2014, 91, 218-227.	2.2	24
70	Outlook: Sorghum as a feed grain for Australian chicken-meat production. Animal Nutrition, 2018, 4, 17-30.	5.1	24
71	Sorghum Genetic Transformation by Particle Bombardment. Methods in Molecular Biology, 2014, 1099, 219-234.	0.9	24
72	Tracking seasonal changes in diversity of pollen allergen exposure: Targeted metabarcoding of a subtropical aerobiome. Science of the Total Environment, 2020, 747, 141189.	8.0	23

#	Article	IF	CITATIONS
73	Gibberellic acid detection of dwarf offtypes in micropropagated Cavendish bananas. Australian Journal of Experimental Agriculture, 1996, 36, 237.	1.0	22
74	Genetic erosion and changes in distribution of sorghum (<i>Sorghum bicolor</i> L. (Moench)) landraces in north-eastern Ethiopia. Plant Genetic Resources: Characterisation and Utilisation, 2008, 6, 1-10.	0.8	22
75	Effect of ethylene and culture environment on development of papaya nodal cultures. Plant Cell, Tissue and Organ Culture, 1997, 49, 93-100.	2.3	21
76	Comparison of identity by descent and identity by state for detecting genetic regions under selection in a sorghum pedigree breeding program. Molecular Breeding, 2005, 14, 441-454.	2.1	21
77	Assessment and rationalization of genetic diversity of Papua New Guinea taro (Colocasia esculenta) using SSR DNA fingerprinting. Genetic Resources and Crop Evolution, 2008, 55, 811-822.	1.6	21
78	Characterization and multiplexing of EST‣SR primers in <i>Cynodon</i> (Poaceae) species ¹ . American Journal of Botany, 2010, 97, e99-e101.	1.7	21
79	Phylogenetic analysis reveals multiple introductions of Cynodon species in Australia. Molecular Phylogenetics and Evolution, 2012, 65, 390-396.	2.7	21
80	Discovering new alleles for yellow spot resistance in the Vavilov wheat collection. Theoretical and Applied Genetics, 2019, 132, 149-162.	3.6	21
81	An efficient interspecific hybridisation protocol for Carica papaya L. × C. cauliflora Jacq Australian Journal of Experimental Agriculture, 1998, 38, 523.	1.0	20
82	Post-anthesis nitrate uptake is critical to yield and grain protein content in Sorghum bicolor. Journal of Plant Physiology, 2017, 216, 118-124.	3.5	20
83	A SWEET solution to rice blight. Nature Biotechnology, 2019, 37, 1280-1282.	17.5	20
84	Sorghum as a novel biomass for the sustainable production of cellulose nanofibers. Industrial Crops and Products, 2021, 171, 113917.	5.2	20
85	Rationalization of taro germplasm collections in the Pacific Island region using simple sequence repeat (SSR) markers. Plant Genetic Resources: Characterisation and Utilisation, 2006, 4, 210-220.	0.8	19
86	Increasing protein content and digestibility in sorghum grain with a synthetic biology approach. Journal of Cereal Science, 2019, 85, 27-34.	3.7	19
87	Lack of Low Frequency Variants Masks Patterns of Non-Neutral Evolution following Domestication. PLoS ONE, 2011, 6, e23041.	2.5	17
88	Characterisation of grain quality in diverse sorghum germplasm using a Rapid Visco-Analyzer and near infrared reflectance spectroscopy. Journal of the Science of Food and Agriculture, 2012, 92, 1402-1410.	3.5	16
89	Endogenous U6 promoters improve CRISPR/Cas9 editing efficiencies in Sorghum bicolor and show potential for applications in other cereals. Plant Cell Reports, 2022, 41, 489-492.	5.6	16
90	Genetic Components of Variance and the Role of Pollen Traits in Sorghum Ergot Resistance. Crop Science, 2006, 46, 2387-2395.	1.8	15

#	Article	IF	CITATIONS
91	Development and characterization of microsatellite loci for <i>Khaya senegalensis</i> (Meliaceae) ¹ . American Journal of Botany, 2010, 97, e111-3.	1.7	15
92	Vavilov wheat accessions provide useful sources of resistance to tan spot (syn. yellow spot) of wheat. Plant Pathology, 2018, 67, 1076-1087.	2.4	15
93	RAPD polymorphisms among variant and phenotypically normal rice (Oryza sativa var. indica) somaclonal progenies. Plant Cell Reports, 1997, 16, 320-324.	5.6	15
94	Genetic differentiation analysis for the identification of complementary parental pools for sorghum hybrid breeding in Ethiopia. Theoretical and Applied Genetics, 2015, 128, 1765-1775.	3.6	14
95	Rice-cold tolerance across reproductive stages. Crop and Pasture Science, 2016, 67, 823.	1.5	14
96	IDENTIFICATION AND CHARACTERISATION OF DWARF OFF-TYPES FROM MICROPROPAGATED CAVENDISH BANANAS. Acta Horticulturae, 1998, , 79-84.	0.2	13
97	Beyond the gene: epigenetic and cis-regulatory targets offer new breeding potential for the future. Current Opinion in Biotechnology, 2022, 73, 88-94.	6.6	13
98	Characterization of the time evolution of starch structure from rice callus. Carbohydrate Polymers, 2015, 127, 116-123.	10.2	12
99	Genetic analysis of preharvest sprouting tolerance in three wheat crosses. Australian Journal of Agricultural Research, 1997, 48, 215.	1.5	12
100	Micropropagated dwarf off-type Cavendish bananas (Musa spp., AAA) show improved tolerance to suboptimal temperatures. Australian Journal of Agricultural Research, 1997, 48, 377.	1.5	12
101	Phylogenetic position of hoop pine (Araucaria cunninghamii). Australian Systematic Botany, 1996, 9, 893.	0.9	11
102	USE OF A SCAR-BASED MARKER FOR THE EARLY DETECTION OF DWARF OFF-TYPES IN MICROPROPAGATED CAVENDISH BANANAS. Acta Horticulturae, 1998, , 157-164.	0.2	11
103	Multifunctional grains for the future: genetic engineering for enhanced and novel cereal quality. In Vitro Cellular and Developmental Biology - Plant, 2009, 45, 383-399.	2.1	10
104	An Efficient in vitro Regeneration System for Australian-Grown Chickpea (Cicer arietinum) Cultivars. Australian Journal of Botany, 1995, 43, 491.	0.6	9
105	Expression Pattern of the Alpha-Kafirin Promoter Coupled with a Signal Peptide from <i>Sorghum bicolor</i> L. Moench. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-8.	3.0	9
106	Additive effects of three auxins and copper on sorghum in vitro root induction. In Vitro Cellular and Developmental Biology - Plant, 2013, 49, 191-197.	2.1	9
107	The Role of Pullulanase in Starch Biosynthesis, Structure, and Thermal Properties by Studying Sorghum with Increased Pullulanase Activity. Starch/Staerke, 2019, 71, 1900072.	2.1	9
108	Ganoderma infection of oil palm – a persistent problem in Papua New Guinea and Solomon Islands. Australasian Plant Pathology, 2020, 49, 69-77.	1.0	9

#	Article	IF	CITATIONS
109	Sorghum. , 2021, , 196-221.		9
110	Manipulating assimilate availability provides insight into the genes controlling grain size in sorghum. Plant Journal, 2021, 108, 231-243.	5.7	9
111	Plant regeneration from leaf-derived callus cultures of the tropical pasture legume Stylosanthes scabra Vog Plant Cell, Tissue and Organ Culture, 1987, 9, 3-8.	2.3	8
112	CONTROL OF ETHYLENE AND USE OF POLYAMINES CAN OPTIMISE THE CONDITIONS FOR SOMATIC EMBRYOGENESIS IN COCONUT (COCOS NUCIFERA L.) AND PAPAYA (CARICA PAPAYA L.). Acta Horticulturae, 1998, , 459-466.	0.2	8
113	Cultivar-specific effects of pathogen testing on storage root yield of sweetpotato, Ipomoea batatas. Annals of Applied Biology, 2011, 158, 288-296.	2.5	8
114	Current status and prospects of plant genome editing in Australia. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 574-583.	2.1	8
115	Genetic characterization of adult-plant resistance to tan spot (syn, yellow spot) in wheat. Theoretical and Applied Genetics, 2021, 134, 2823-2839.	3.6	8
116	A rapid PCR protocol for marker assisted detection of heterozygotes in segregating generations involving 1BL/1RS translocation and normal wheat lines. Australian Journal of Agricultural Research, 2002, 53, 931.	1.5	8
117	High-Efficiency Plant Regeneration From Callus Induced on Mature Indica Rice Caryopses. Australian Journal of Botany, 1995, 43, 337.	0.6	7
118	Effects of the growth environment on the yield and material properties of nanocellulose derived from the Australian desert grass Triodia. Industrial Crops and Products, 2018, 126, 238-249.	5.2	7
119	The functionality of α-kafirin promoter and α-kafirin signal peptide. Plant Cell, Tissue and Organ Culture, 2017, 128, 133-143.	2.3	6
120	Variation among somaclonal progenies from three species of Stylosanthes. Australian Journal of Agricultural Research, 1990, 41, 645.	1.5	6
121	Mining the Vavilov wheat diversity panel for new sources of adult plant resistance to stripe rust. Theoretical and Applied Genetics, 2022, 135, 1355-1373.	3.6	6
122	Sequence diversity in the coat protein coding region of the genome RNA of Johnsongrass mosaic virus in Australia. Archives of Virology, 2004, 149, 1633-41.	2.1	5
123	Factors Controlling Selfâ€Fertility in Sunflower: The Role of GCA/SCA Effects, <i>S</i> Alleles, and Floret Characteristics. Crop Science, 2012, 52, 128-135.	1.8	5
124	Epigenome guided crop improvement: current progress and future opportunities. Emerging Topics in Life Sciences, 2022, 6, 141-151.	2.6	5
125	A New Technique for Coconut (Cocos nucifera) Germplasm Collection from Remote Sites: Culturability of Embryos Following Low-temperature Incubation. Australian Journal of Botany, 1999, 47, 69.	0.6	4
126	Genomic Approaches for Improving Grain Quality of Sorghum. Compendium of Plant Genomes, 2016, , 189-205.	0.5	4

#	Article	IF	CITATIONS
127	Expression patterns of the native Shrunken-2 promoter in Sorghum bicolor visualised through use of the GFP reporter gene. Plant Cell Reports, 2017, 36, 1689-1700.	5.6	4
128	Tunable crops are just a spray away. Nature Plants, 2021, 7, 102-103.	9.3	4
129	Addressing the shortfalls of sorghum as a feed grain for chicken-meat production. World's Poultry Science Journal, 2021, 77, 29-41.	3.0	4
130	Biolistic DNA Delivery and Its Applications in Sorghum bicolor. Methods in Molecular Biology, 2020, 2124, 197-215.	0.9	4
131	Sterile leucaena becomes a reality?. Tropical Grasslands - Forrajes Tropicales, 2019, 7, 74-79.	0.5	4
132	The vegetative nitrogen response of sorghum lines containing different alleles for nitrate reductase and glutamate synthase. Molecular Breeding, 2017, 37, 1.	2.1	3
133	Genetic variation for leaf carbon isotope discrimination and its association with transpiration efficiency in canola (Brassica napus). Functional Plant Biology, 2020, 47, 355.	2.1	3
134	RANDOMLY AMPLIFIED POLYMORPHIC DNA MARKERS FOR A CARICA INTERSPECIFIC HYBRID. Acta Horticulturae, 1998, , 133-140.	0.2	3
135	THE EFFECT OF EXOGENOUS POLYAMINES ON SOMATIC EMBRYOGENESIS AND PLANT REGENERATION FROM SORGHUM BICOLOR AND SACCHARUM SPP Acta Horticulturae, 1998, , 451-458.	0.2	3
136	Characterization, inheritance, and molecular study of opaque leaf mutant in mungbean (Vigna radiata) Tj ETQqO	0 0 rgBT /0 1.5	Overlock 10
137	Stem vacuole-targetted sucrose isomerase enhances sugar content in sorghum. Biotechnology for Biofuels, 2021, 14, 53.	6.2	2
138	Potential of Australian bermudagrasses (Cynodon spp.) for pasture in subtropical Australia. Tropical Grasslands - Forrajes Tropicales, 2013, 1, 81.	0.5	2
139	Occurrence of LINE, gypsy-like, and copia-like retrotransposons in the clonally propagated sweet potato (Ipomoea batatas L.). Genome, 2011, 54, 603-609.	2.0	1
140	Microsatellite Analysis of Oil Palms and their Progenies Bred in Papua New Guinea. Tropical Plant Biology, 2016, 9, 280-289.	1.9	1
141	Genetic Diversity and Population Structure of Field Isolates of Ganoderma Boninense from Oil Palm Plantation in Solomon Islands. Proceedings (mdpi), 2020, 36, .	0.2	1
142	Random amplified polymorphic DNA (RAPD) detection of dwarf off-types in micropropagated Cavendish (Musa spp. AAA) bananas. Plant Cell Reports, 1996, 16, 118-123.	5.6	1
143	Quantitative trait loci (QTL) for low temperature tolerance at the young microspore stage in rice (<i>Oryza sativa</i> L.) in Australian breeding material. Breeding Science, 2022, , .	1.9	1

144The hypersensitive reaction to bacterial canker in Mirabilis jalapa is simply inherited. Australasian1.00Plant Pathology, 1996, 25, 64.

#	Article	IF	CITATIONS
145	How Do Crops Balance Water Supply and Demand when Water Is Limiting?. Proceedings (mdpi), 2020, 36,	0.2	ο