Jean-Luc Legras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4314021/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Molecular Ecology, 2007, 16, 2091-2102.	3.9	503
2	Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16333-16338.	7.1	438
3	Optimisation of interdelta analysis forSaccharomyces cerevisiaestrain characterisation. FEMS Microbiology Letters, 2003, 221, 249-255.	1.8	319
4	Bread, beer and wine: Yeast domestication in the Saccharomyces sensu stricto complex. Comptes Rendus - Biologies, 2011, 334, 229-236.	0.2	267
5	Role of social wasps in <i>Saccharomyces cerevisiae</i> ecology and evolution. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13398-13403.	7.1	259
6	Adaptation of S. cerevisiae to Fermented Food Environments Reveals Remarkable Genome Plasticity and the Footprints of Domestication. Molecular Biology and Evolution, 2018, 35, 1712-1727.	8.9	214
7	A population genomics insight into the Mediterranean origins of wine yeast domestication. Molecular Ecology, 2015, 24, 5412-5427.	3.9	186
8	Evolutionary Advantage Conferred by an Eukaryote-to-Eukaryote Gene Transfer Event in Wine Yeasts. Molecular Biology and Evolution, 2015, 32, 1695-1707.	8.9	165
9	Predominance of Saccharomyces uvarum during spontaneous alcoholic fermentation, for three consecutive years, in an Alsatian winery. Journal of Applied Microbiology, 2004, 97, 1140-1148.	3.1	137
10	Selection of hypervariable microsatellite loci for the characterization of Saccharomyces cerevisiae strains. International Journal of Food Microbiology, 2005, 102, 73-83.	4.7	136
11	Characterization of natural hybrids ofSaccharomyces cerevisiaeandSaccharomyces bayanusvar.uvarum. FEMS Yeast Research, 2007, 7, 540-549.	2.3	127
12	A genetic approach of wine yeast fermentation capacity in nitrogen-starvation reveals the key role of nitrogen signaling. BMC Genomics, 2014, 15, 495.	2.8	99
13	Deciphering the Hybridisation History Leading to the Lager Lineage Based on the Mosaic Genomes of Saccharomyces bayanus Strains NBRC1948 and CBS380T. PLoS ONE, 2011, 6, e25821.	2.5	93
14	QTL mapping of the production of wine aroma compounds by yeast. BMC Genomics, 2012, 13, 573.	2.8	91
15	Flor Yeast: New Perspectives Beyond Wine Aging. Frontiers in Microbiology, 2016, 7, 503.	3.5	86
16	Natural nitriles and their metabolism. World Journal of Microbiology and Biotechnology, 1990, 6, 83-108.	3.6	82
17	QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation. BMC Genomics, 2018, 19, 166.	2.8	81
18	Ecological Success of a Group of Saccharomyces cerevisiae/Saccharomyces kudriavzevii Hybrids in the Northern European Wine-Making Environment. Applied and Environmental Microbiology, 2012, 78, 3256-3265.	3.1	72

JEAN-LUC LEGRAS

#	Article	IF	CITATIONS
19	Amplification of a Zygosaccharomyces bailii DNA Segment in Wine Yeast Genomes by Extrachromosomal Circular DNA Formation. PLoS ONE, 2011, 6, e17872.	2.5	70
20	Application of Multi Locus Sequence Typing to the analysis of the biodiversity of indigenous Saccharomyces cerevisiae wine yeasts from Lebanon. Journal of Applied Microbiology, 2006, 100, 699-711.	3.1	68
21	Genomic signatures of adaptation to wine biological ageing conditions in biofilmâ€forming flor yeasts. Molecular Ecology, 2017, 26, 2150-2166.	3.9	68
22	Activation of Two Different Resistance Mechanisms in <i>Saccharomyces cerevisiae</i> upon Exposure to Octanoic and Decanoic Acids. Applied and Environmental Microbiology, 2010, 76, 7526-7535.	3.1	66
23	Cellar-Associated Saccharomyces cerevisiae Population Structure Revealed High-Level Diversity and Perennial Persistence at Sauternes Wine Estates. Applied and Environmental Microbiology, 2016, 82, 2909-2918.	3.1	66
24	Population Structure and Comparative Genome Hybridization of European Flor Yeast Reveal a Unique Group of Saccharomyces cerevisiae Strains with Few Gene Duplications in Their Genome. PLoS ONE, 2014, 9, e108089.	2.5	59
25	Novel starters for old processes: use of <i>Saccharomyces cerevisiae</i> strains isolated from artisanal sourdough for craft beer production at a brewery scale. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 85-92.	3.0	56
26	French Jura flor yeasts: genotype and technological diversity. Antonie Van Leeuwenhoek, 2009, 95, 263-273.	1.7	50
27	Variation of linalool and geraniol content within two pairs of aromatic and non-aromatic grapevine clones. Australian Journal of Grape and Wine Research, 2009, 15, 120-130.	2.1	50
28	Genetic analysis of geraniol metabolism during fermentation. Food Microbiology, 2013, 33, 228-234.	4.2	49
29	Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks. BMC Genomics, 2013, 14, 681.	2.8	46
30	Diversity and dynamics of fungi during spontaneous fermentations and association with unique aroma profiles in wine. International Journal of Food Microbiology, 2021, 338, 108983.	4.7	46
31	Genetic analysis of <i>Saccharomyces cerevisiae</i> strains isolated from palm wine in eastern Nigeria. Comparison with other African strains. Journal of Applied Microbiology, 2009, 106, 1569-1578.	3.1	37
32	The Geographic Distribution of Saccharomyces cerevisiae Isolates within three Italian Neighboring Winemaking Regions Reveals Strong Differences in Yeast Abundance, Genetic Diversity and Industrial Strain Dissemination. Frontiers in Microbiology, 2017, 8, 1595.	3.5	36
33	Yeast multistress resistance and lag-phase characterisation during wine fermentation. FEMS Yeast Research, 2017, 17, .	2.3	27
34	p-Hydroxyphenyl-pyranoanthocyanins: An Experimental and Theoretical Investigation of Their Acid—Base Properties and Molecular Interactions. International Journal of Molecular Sciences, 2016, 17, 1842.	4.1	26
35	Microsatellite analysis ofSaccharomyces uvarumdiversity. FEMS Yeast Research, 2016, 16, fow002.	2.3	26
36	Lipids modulate acetic acid and thiol final concentrations in wine during fermentation by Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids. AMB Express, 2018, 8, 130.	3.0	26

JEAN-LUC LEGRAS

#	Article	IF	CITATIONS
37	Investigation of Genetic Relationships Between Hanseniaspora Species Found in Grape Musts Revealed Interspecific Hybrids With Dynamic Genome Structures. Frontiers in Microbiology, 2019, 10, 2960.	3.5	23
38	Diversity of Saccharomyces cerevisiae strains isolated from Borassus akeassii palm wines from Burkina Faso in comparison to other African beverages. International Journal of Food Microbiology, 2015, 211, 128-133.	4.7	22
39	A set of haploid strains available for genetic studies of <i>Saccharomyces cerevisiae</i> flor yeasts. FEMS Yeast Research, 2016, 16, fow066.	2.3	21
40	Detoxification of cassava pulp using Brevibacterium sp. R312. Applied Microbiology and Biotechnology, 1990, 33, 529.	3.6	17
41	Aborting meiosis allows recombination in sterile diploid yeast hybrids. Nature Communications, 2021, 12, 6564.	12.8	14
42	Microbial diversity and biochemical characteristics ofBorassus akeassiiwine. Letters in Applied Microbiology, 2016, 63, 297-306.	2.2	12
43	Characterization and Role of Sterols in Saccharomyces cerevisiae during White Wine Alcoholic Fermentation. Fermentation, 2022, 8, 90.	3.0	12
44	Genome of Saccharomyces cerevisiae and Related Yeasts. , 2009, , 361-378.		11
45	Purification and properties of the β-glucosidase from a nitrile hydratase-producingBrevibacterium sp. strain R312. Journal of Basic Microbiology, 1989, 29, 655-669.	3.3	9
46	SSU1 Checkup, a Rapid Tool for Detecting Chromosomal Rearrangements Related to the SSU1 Promoter in Saccharomyces cerevisiae: An Ecological and Technological Study on Wine Yeast. Frontiers in Microbiology, 2020, 11, 1331.	3.5	9
47	Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from traditional alcoholic beverages of CA´te d'Ivoire. International Journal of Food Microbiology, 2019, 297, 1-10.	4.7	8
48	QTL mapping of modelled metabolic fluxes reveals gene variants impacting yeast central carbon metabolism. Scientific Reports, 2020, 10, 2162.	3.3	7
49	Truncation of Gal4p explains the inactivation of theGAL/MELregulon in bothSaccharomyces bayanusand someSaccharomyces cerevisiaewine strains. FEMS Yeast Research, 2016, 16, fow070.	2.3	6
50	The "pied de cuve―as an alternative way to manage indigenous fermentation: impact on the fermentative process and <i>Saccharomyces cerevisiae</i> diversity. Oeno One, 2020, 54, 335-342.	1.4	6
51	Development of a New Assay for Measuring H2S Production during Alcoholic Fermentation: Application to the Evaluation of the Main Factors Impacting H2S Production by Three Saccharomycescerevisiae Wine Strains. Fermentation, 2021, 7, 213.	3.0	6
52	SaccharomycesIDentifier, SID: strain-level analysis of Saccharomyces cerevisiae populations by using microsatellite meta-patterns. Scientific Reports, 2017, 7, 15343.	3.3	5
53	Sterol uptake analysis in Saccharomyces and non-Saccharomyces wine yeast species. FEMS Yeast Research, 2021, 21, .	2.3	5
54	Lebanon's Native Oenological Saccharomyces cerevisiae Flora: Assessment of Different Aspects of Genetic Diversity and Evaluation of Winemaking Potential. Journal of Fungi (Basel, Switzerland), 2021, 7, 678.	3.5	5

JEAN-LUC LEGRAS

#	Article	IF	CITATIONS
55	Genetic bases for the metabolism of the DMS precursor S-methylmethionine by Saccharomyces cerevisiae. Food Microbiology, 2022, 106, 104041.	4.2	5
56	Degradation of cyanoglucosides by Brevibacterium sp. R 312 strain Journal of General and Applied Microbiology, 1989, 35, 451-461.	0.7	4
57	Purification and Properties of the Nitrile Hydratase of a New Strain of Rhodococcus sp Zentralblatt Für Mikrobiologie, 1991, 146, 89-98.	0.2	3
58	Ecology, Diversity and Applications of Saccharomyces Yeasts in Food and Beverages. , 2017, , 283-321.		3
59	Quantifying the effect of human practices on S. cerevisiae vineyard metapopulation diversity. Scientific Reports, 2020, 10, 16214.	3.3	3
60	Metabolome Exploration by High-Resolution Mass Spectrometry Methodologies of Two New Yeast Species: <i>Starmerella reginensis</i> and <i>Starmerella kourouensis</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 11502-11511.	5.2	3
61	Molecular Genetic Analysis with Microsatellite-like Loci Reveals Specific Dairy-Associated and Environmental Populations of the Yeast Geotrichum candidum. Microorganisms, 2022, 10, 103.	3.6	3
62	New Insights Into Wine Yeast Diversities. , 2019, , 117-163.		0