
Ichizo Yagi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4313751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zinc/graphitic carbon nitride co-mediated dual-template synthesis of densely populated Fe–N _{<i>x</i>} -embedded 2D carbon nanosheets towards oxygen reduction reactions for Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 5971-5980.	10.3	12
2	<i>In situ</i> fluorescence yield soft X-ray absorption spectroscopy of electrochemical nickel deposition processes with and without ethylene glycol. RSC Advances, 2022, 12, 10425-10430.	3.6	1
3	<i>In situ</i> X-ray Absorption Spectroscopy at Platinum Group Metal (PGM) and Non-PGM Electrocatalysts. Denki Kagaku, 2022, 90, 16-20.	0.0	0
4	Structural Transformation of Pt–Ni Nanowires as Oxygen Reduction Electrocatalysts to Branched Nanostructures during Potential Cycles. ACS Catalysis, 2022, 12, 259-264.	11.2	7
5	Electrocatalytic nitrate and nitrous oxide reduction at interfaces between Pt-Pd nanoparticles and fluorine-doped tin oxide. Electrochimica Acta, 2022, 425, 140628.	5.2	2
6	(Invited, Digital Presentation) Cooperative Effects of Fe and Cu Sites in N-Doped Carbon Nanotubes on Oxygen Reduction Activity and Selectivity. ECS Meeting Abstracts, 2022, MA2022-01, 882-882.	0.0	0
7	(Digital Presentation) Oxygen Reduction Activity, Durability and Structural Transformation of Pt-Ni Nanowires in the Presence and Absence of Pt-Ni Nanoparticles. ECS Meeting Abstracts, 2022, MA2022-01, 1543-1543.	0.0	0
8	(Digital Presentation) Improving Oxygen Evolution Reaction Performance and Durability Using Rhombic Dodecahedral Pt ₃ (Ni,X) Nanoparticles with Metal Oxide Supports. ECS Meeting Abstracts, 2022, MA2022-01, 1358-1358.	0.0	0
9	Impact of Heterometallic Cooperativity of Iron and Copper Active Sites on Electrocatalytic Oxygen Reduction Kinetics. ACS Catalysis, 2021, 11, 2356-2365.	11.2	40
10	Impact of membrane protein-lipid interactions on formation of bilayer lipid membranes on SAM-modified gold electrode. Electrochimica Acta, 2021, 373, 137888.	5.2	8
11	Electrocatalytic activity and volatile product selectivity for nitrate reduction at tin-modified Pt(100), Pd(100) and Pd–Pt(100) single crystal electrodes in acidic media. Electrochimica Acta, 2021, 398, 139281.	5.2	9
12	Electrochemically Driven Specific Alkaline Metal Cation Adsorption on a Graphene Interface. Journal of Physical Chemistry C, 2021, 125, 22154-22162.	3.1	11
13	Oneâ€step Preparation of Fe/N/C Singleâ€atom Catalysts Containing Feâ^'N4 Sites from an Iron Complex Precursor with 5,6,7,8â€Tetraphenylâ€1,12â€diazatriphenylene Ligands. Chemistry - A European Journal, 2021, , .	3.3	2
14	Terahertz Raman Spectroscopy of Ligand-Protected Au ₈ Clusters. Journal of Physical Chemistry Letters, 2020, 11, 7996-8001.	4.6	19
15	Electrocatalytic Oxygen Reduction at Multinuclear Metal Active Sites Inspired by Metalloenzymes. E-Journal of Surface Science and Nanotechnology, 2020, 18, 81-93.	0.4	10
16	Electronic Effects of Nitrogen Atoms of Supports on Pt–Ni Rhombic Dodecahedral Nanoframes for Oxygen Reduction. ACS Applied Energy Materials, 2020, 3, 6768-6774.	5.1	19
17	Confinement of Hydrogen Molecules at Graphene–Metal Interface by Electrochemical Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2020, 124, 5300-5307.	3.1	17
18	(Invited) Oxygen Reduction Reactivity at Fe- and Cu-Codoped Carbon Nanostructures. ECS Meeting Abstracts, 2020, MA2020-01, 875-875.	0.0	0

#	Article	IF	CITATIONS
19	Electrocatalytic Activity and Durability of Pt–Ni Nanowires for Oxygen Reduction. ECS Meeting Abstracts, 2020, MA2020-02, 2314-2314.	0.0	0
20	Improving Electrochemical Activity of Rhombic Dodecahedral Pt3(Ni,X) Nanoparticles Using Transition Metal Additions. ECS Meeting Abstracts, 2020, MA2020-02, 2295-2295.	0.0	0
21	Synthesis and Electrocatalytic Activity of Pt-Ni Nanowire. ECS Meeting Abstracts, 2020, MA2020-02, 2294-2294.	0.0	Ο
22	Host–guest chemistry between cyclodextrin and a hydrogen evolution catalyst cobaloxime. New Journal of Chemistry, 2019, 43, 10087-10092.	2.8	8
23	(Invited) Electrochemical Oxygen Reduction Catalyzed at Pt–Ni Nanostructured Electrocatalysts Immobilized on Nitrogen-Doped Carbon Supports. ECS Meeting Abstracts, 2019, , .	0.0	Ο
24	Effects of Nitrogen-Doped Carbon Support on Oxygen Reduction Reaction Activity of Pt–Ni Nanoframe. ECS Meeting Abstracts, 2019, , .	0.0	0
25	Co-Doping Effects of Iron and Copper into Carbon Nanotubes on Oxygen Reduction Reaction Activity. ECS Meeting Abstracts, 2019, , .	0.0	Ο
26	Non-PGM Electrocatalysts for Oxygen Reduction Reaction Inspired By Metalloenzyme Active Sites. ECS Meeting Abstracts, 2019, , .	0.0	1
27	Mechanistic Insights into Enzymatic Nitric Oxide Reduction Revealed By Surface-Enhanced Infrared Absorption Spectroscopy. ECS Meeting Abstracts, 2019, , .	0.0	Ο
28	Electrochemical Second Harmonic Generation. , 2018, , 91-95.		0
29	Incorporation of Multinuclear Copper Active Sites into Nitrogen-Doped Graphene for Electrochemical Oxygen Reduction. ACS Applied Energy Materials, 2018, 1, 2358-2364.	5.1	15
30	Bio-inorganic hybrid photoanodes of photosystem II and ferricyanide-intercalated layered double hydroxide for visible-light-driven water oxidation. Electrochimica Acta, 2018, 264, 386-392.	5.2	8
31	Cathodic Arc-plasma Deposition of Platinum Nanoparticles on Fluorine-doped Tin Oxide for Electrocatalytic Nitrate Reduction Reaction. Electrochemistry, 2018, 86, 220-222.	1.4	3
32	Enhancement of Electrocatalytic Oxygen Reduction Activity and Durability of Pt–Ni Rhombic Dodecahedral Nanoframes by Anchoring to Nitrogen-Doped Carbon Support. ACS Omega, 2018, 3, 9052-9059.	3.5	16
33	Surface-Enhanced Infrared Absorption Spectroscopy of Bacterial Nitric Oxide Reductase under Electrochemical Control Using a Vibrational Probe of Carbon Monoxide. Journal of Physical Chemistry Letters, 2018, 9, 5196-5200.	4.6	17
34	Electrocatalytic nitrate reduction on well-defined surfaces of tin-modified platinum, palladium and platinum-palladium single crystalline electrodes in acidic and neutral media. Journal of Electroanalytical Chemistry, 2017, 800, 46-53.	3.8	42
35	Development of a spectro-electrochemical cell for soft X-ray photon-in photon-out spectroscopy. Review of Scientific Instruments, 2017, 88, 104101.	1.3	17
36	Bioinspired Iron- and Copper-incorporated Carbon Electrocatalysts for Oxygen Reduction Reaction. Chemistry Letters, 2016, 45, 1213-1215.	1.3	12

#	Article	IF	CITATIONS
37	Oxygen Reduction Reaction Catalyzed by Self-Assembled Monolayers of Copper-Based Electrocatalysts on a Polycrystalline Gold Surface. Journal of Physical Chemistry C, 2016, 120, 15814-15822.	3.1	24
38	Deprotonation of a dinuclear copper complex of 3,5-diamino-1,2,4-triazole for high oxygen reduction activity. Physical Chemistry Chemical Physics, 2015, 17, 8638-8641.	2.8	25
39	Molecular Structure of Buried Perfluorosulfonated Ionomer/Pt Interface Probed by Vibrational Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 26182-26190.	3.1	44
40	Ultrafast Dynamics of Photogenerated Electrons in CdS Nanocluster Multilayers Assembled on Solid Substrates: Effects of Assembly and Electrode Potential. ChemPhysChem, 2013, 14, 2174-2182.	2.1	3
41	Evaluation of change in nanostructure through the heat treatment of carbon materials and their durability for the start/stop operation of polymer electrolyte fuel cells. Electrochimica Acta, 2013, 97, 33-41.	5.2	62
42	(Invited) Micro-to-Nanostructures to Probe Electrocatalysts by SERS. ECS Transactions, 2013, 45, 103-109.	0.5	1
43	The charged interface between Pt and water: First principles molecular dynamics simulations. AIP Advances, 2012, 2, 032182.	1.3	19
44	Adsorption and Electroreduction of Oxygen on Gold in Acidic Media: In Situ Spectroscopic Identification of Adsorbed Molecular Oxygen and Hydrogen Superoxide. Journal of Physical Chemistry C, 2012, 116, 14390-14400.	3.1	42
45	Electrocatalytic Activity for Oxygen Reduction Reaction of Pseudomorphic Pt Monolayer Prepared Electrochemically on a Au(111) Surface. Chemistry Letters, 2011, 40, 1235-1237.	1.3	11
46	Study of Platinum Dissolution Mechanism Using a Highly Sensitive Electrochemical Quartz Crystal Microbalance. Chemistry Letters, 2011, 40, 402-404.	1.3	6
47	In Situ Observation of Nafion-Model Molecular Behaviors at Metal Electrodes by SEIRAS. ECS Transactions, 2011, 41, 689-696.	0.5	3
48	Nanostructures to Probe Electrocatalytic Reactions II. ECS Transactions, 2011, 35, 183-191.	0.5	0
49	Mesoporous Materials toward Nanofabricator and Nanoreactor. Electrochemistry, 2010, 78, 105-113.	1.4	6
50	Electrochemical Fabrication of Cubic-Shaped Pt Nanoparticles onto Carbon Fiber Electrodes. Electrochemistry, 2010, 78, 132-135.	1.4	3
51	Nanostructures to Probe Electrocatalytic Reactions. ECS Transactions, 2010, 28, 111-120.	0.5	0
52	Electrochemical Modification of Surface Morphology of Au/Ti Bilayer Films Deposited on a Si Prism for in Situ Surface-Enhanced Infrared Absorption (SEIRA) Spectroscopy. Langmuir, 2010, 26, 18097-18104.	3.5	16
53	Oxygen Reduction Reactivity of Precisely Controlled Nanostructured Model Catalysts. Journal of Physical Chemistry C, 2010, 114, 14675-14683.	3.1	6
54	Electrocatalytic Oxygen Reduction Reaction by Pt Ultra-thin Films Formed on Au Single Crystal Electrodes. Hyomen Kagaku, 2009, 30, 499-502.	0.0	0

#	Article	IF	CITATIONS
55	Oxygen Transfer and Storage Processes inside the Mesopores of Platinum-Deposited Mesoporous Carbon Catalyst Thin-Layer Electrode. Journal of Physical Chemistry C, 2009, 113, 12149-12153.	3.1	11
56	Direct Observation of Well-dispersed Pt Nanoparticles inside the Pores of Mesoporous Carbon through the Cross Section of Pt/Mesoporous Carbon Particles. Chemistry Letters, 2009, 38, 346-347.	1.3	13
57	Preparation of Pt/mesoporous carbon (MC) electrode catalyst and its reactivity toward oxygen reduction. Electrochimica Acta, 2008, 53, 6117-6125.	5.2	56
58	Preparation of a self-standing mesoporous carbon membrane with perpendicularly-ordered pore structures. Chemical Communications, 2008, , 5809.	4.1	15
59	In Situ Surface-Enhanced Raman Scattering Spectroscopic Study of Pyridine Adsorbed on Gold Electrode Surfaces Comprised of Plasmonic Crystal Structures. Journal of Physical Chemistry C, 2008, 112, 17603-17610.	3.1	17
60	In situ éžç·šå½¢å^†å‰æ³•ã«ã, ã, é›»æ¥μ表é¢ã®å^†æž• Electrochemistry, 2008, 76, 220-226.	1.4	1
61	Optical Recognition of Chirality at Surfaces by Vibrational Sum Frequency Generation Spectroscopy. Hyomen Kagaku, 2008, 29, 518-525.	0.0	0
62	Size-Dependent Carrier Dynamics in CdS Nanoparticles by Femtosecond Visible-Pump/IR-Probe Measurements. Journal of Physical Chemistry B, 2006, 110, 14192-14197.	2.6	16
63	Photocontrolled Magnetization of CdS-Modified Prussian Blue Nanoparticles. Journal of the American Chemical Society, 2006, 128, 10978-10982.	13.7	40
64	Optical Recognition of Surface Chirality at Au(hkl) Single Crystalline Surfaces by Second Harmonic Generation Rotational Anisotropy. Journal of the American Chemical Society, 2005, 127, 12743-12746.	13.7	18
65	Electrodeposition of Flattened Cu Nanoclusters on a p-GaAs(001) Electrode Monitored by in situ Optical Second Harmonic Generation. Journal of Physical Chemistry B, 2005, 109, 5021-5032.	2.6	9
66	Electrochemical Hydrogen and Oxygen Evolution Mechanisms at B-doped Diamond Electrodes Investigated by TOF-ESD Methods. , 2005, , 132-148.		0
67	Electrocatalytic reduction of oxygen to water at Au nanoclusters vacuum-evaporated on boron-doped diamond in acidic solution. Electrochemistry Communications, 2004, 6, 773-779.	4.7	72
68	Preparation of Cocrystals of 2-Amino-3-nitropyridine with Benzenesulfonic Acids for Second-Order Nonlinear Optical Materials. Crystal Growth and Design, 2004, 4, 807-811.	3.0	74
69	Cocrystals of 2-AMINO-5-Nitropyridine with Benzenesulfonic Acids for Second-Order Nonlinear Optical Materials. Molecular Crystals and Liquid Crystals, 2004, 420, 79-89.	0.9	5
70	Cocrystals of 2-AMINO-5-Nitropyridine with Benzenesulfonic Acids for Second Order Nonlinear Optical Materials. Molecular Crystals and Liquid Crystals, 2004, 414, 77-86.	0.9	1
71	Femtosecond Visible Pump Mid-IR Probe Study on the Effects of Surface Treatments on Ultrafast Photogenerated Carrier Dynamics in n-GaAs (100) Crystals. Chemistry Letters, 2004, 33, 604-605.	1.3	3
72	Direct Proof for Electrochemical Substitution of Surface Hydrogen of Boron-doped Diamond Electrode by TOF–ESD Method. Chemistry Letters, 2003, 32, 1050-1051.	1.3	7

#	Article	IF	CITATIONS
73	The Effects of Nitrogen and Plasma Power on Electrochemical Properties of Boron-Doped Diamond Electrodes Grown by MPCVD. Journal of the Electrochemical Society, 2002, 149, E1.	2.9	4
74	Second harmonic generation study on electrochemical deposition of palladium on a polycrystalline gold electrode. Journal of Electroanalytical Chemistry, 2002, 524-525, 184-193.	3.8	15
75	Synthesis, Structure, and Second-Harmonic Generation of Noncentrosymmetric Cocrystals of 2-Amino-5-nitropyridine with Achiral Benzenesulfonic Acids. Crystal Growth and Design, 2001, 1, 467-471.	3.0	50
76	Synthesis of Well-Aligned Diamond Nanocylinders. Advanced Materials, 2001, 13, 247-249.	21.0	133
77	Surface carbonyl groups on oxidized diamond electrodes. Journal of Electroanalytical Chemistry, 2000, 492, 31-37.	3.8	101
78	Introduction of Oxygen-Containing Functional Groups onto Diamond Electrode Surfaces by Oxygen Plasma and Anodic Polarization. Electrochemical and Solid-State Letters, 1999, 2, 522.	2.2	130
79	Control of the Dynamics of Photogenerated Carriers at the Boron-Doped Diamond/Electrolyte Interface by Variation of the Surface Termination. Electrochemical and Solid-State Letters, 1999, 2, 457.	2.2	14
80	Electrochemical selectivity for redox systems at oxygen-terminated diamond electrodes. Journal of Electroanalytical Chemistry, 1999, 473, 173-178.	3.8	239
81	Electroanalysis of dopamine and NADH at conductive diamond electrodes. Journal of Electroanalytical Chemistry, 1999, 473, 179-185.	3.8	133
82	Electrochemical Oxidation of NADH at Highly Boron-Doped Diamond Electrodes. Analytical Chemistry, 1999, 71, 2506-2511.	6.5	249
83	Electrochemical Control of the Second Harmonic Generation Property of Self-Assembled Monolayers Containing atrans-Ferrocenyl-Nitrophenyl Ethylene Group on Gold. Journal of the American Chemical Society, 1999, 121, 391-398.	13.7	68
84	New Aspect on CVD Diamond Films. Electrochemical Applications of Conductive Diamond Thin Films Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 1999, 50, 486-493.	0.2	2
85	Real time monitoring of electrochemical deposition of tellurium on Au(111) electrode by optical second harmonic generation technique. Surface Science, 1998, 406, 1-8.	1.9	18
86	In Situ Optical Second Harmonic Rotational Anisotropy Measurements of an Au(111) Electrode during Electrochemical Deposition of Tellurium. Journal of Physical Chemistry B, 1998, 102, 2677-2683.	2.6	25
87	Excitation Wavelength Dependent Three-Wave Mixing at a CO-Covered Platinum Electrode. Journal of Physical Chemistry B, 1997, 101, 7414-7421.	2.6	26
88	Reaction pathway of four-electron oxidation of formaldehyde on platinum electrode as observed by in situ optical spectroscopy. Surface Science, 1997, 386, 82-88.	1.9	42
89	In situ observation of anodic dissolution process of p-GaAs(001) in HCl solution by surface X-ray diffraction. Journal of Electroanalytical Chemistry, 1997, 429, 13-17.	3.8	10
90	In situOptical Second Harmonic Generation Study of Electrochemical Oxidation of Formaldehyde on a Polycrystalline Platinum Electrode. Chemistry Letters, 1996, 25, 529-530.	1.3	7

Ichizo Yagi

#	Article	IF	CITATIONS
91	Dissociative adsorption dynamics of formaldehyde on a platinum electrode surface; one-dimensional domino?. Chemical Physics, 1996, 205, 269-275.	1.9	26
92	In situ optical second harmonic generation studies of electrochemical deposition of tellurium on polycrystalline gold electrodes. Journal of Electroanalytical Chemistry, 1996, 401, 95-101.	3.8	42
93	Electrochemical quartz crystal microbalance studies of self-assembled monolayers of 11-ferrocenyl-1-undecanethiol: Structure-dependent ion-pairing and solvent uptake. Journal of Electroanalytical Chemistry, 1994, 372, 117-124.	3.8	84
94	Packing State and Stability of Self-Assembled Monolayers of 11-Ferrocenyl-1-undecanethiol on Platinum Electrodes. Bulletin of the Chemical Society of Japan, 1994, 67, 863-865.	3.2	48
95	In situ and dynamic monitoring of the self-assembling and redox processes of a ferrocenylundecanethiol monolayer by electrochemical quartz crystal microbalance. Langmuir, 1992, 8, 1385-1387.	3.5	180