
## Qingying Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4313725/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science, 2016, 354, 1414-1419.                                                                                                                 | 12.6 | 1,292     |
| 2  | Activity Descriptor Identification for Oxygen Reduction on Nonprecious Electrocatalysts: Linking<br>Surface Science to Coordination Chemistry. Journal of the American Chemical Society, 2013, 135,<br>15443-15449.                                  | 13.7 | 719       |
| 3  | Highly active oxygen reduction non-platinum group metal electrocatalyst without direct<br>metal–nitrogen coordination. Nature Communications, 2015, 6, 7343.                                                                                         | 12.8 | 583       |
| 4  | Experimental Observation of Redox-Induced Fe–N Switching Behavior as a Determinant Role for<br>Oxygen Reduction Activity. ACS Nano, 2015, 9, 12496-12505.                                                                                            | 14.6 | 499       |
| 5  | Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction.<br>Energy and Environmental Science, 2016, 9, 2418-2432.                                                                                         | 30.8 | 472       |
| 6  | Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal–Nitrogen Coordinated<br>Non-Precious-Metal Electrocatalyst Systems. Journal of Physical Chemistry C, 2014, 118, 8999-9008.                                                              | 3.1  | 461       |
| 7  | Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nature Communications, 2017, 8, 957.                                                                                                        | 12.8 | 443       |
| 8  | Microporous Framework Induced Synthesis of Single-Atom Dispersed Fe-N-C Acidic ORR Catalyst and<br>Its in Situ Reduced Fe-N <sub>4</sub> Active Site Identification Revealed by X-ray Absorption<br>Spectroscopy. ACS Catalysis, 2018, 8, 2824-2832. | 11.2 | 433       |
| 9  | Charge-Transfer Effects in Ni–Fe and Ni–Fe–Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution<br>Reaction. ACS Catalysis, 2016, 6, 155-161.                                                                                                     | 11.2 | 413       |
| 10 | Chemical vapour deposition of Fe–N–C oxygen reduction catalysts with full utilization of dense<br>Fe–N4 sites. Nature Materials, 2021, 20, 1385-1391.                                                                                                | 27.5 | 359       |
| 11 | Recent Insights into the Oxygen-Reduction Electrocatalysis of Fe/N/C Materials. ACS Catalysis, 2019, 9, 10126-10141.                                                                                                                                 | 11.2 | 295       |
| 12 | Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid. Nano Energy, 2016, 29, 65-82.                                                                                          | 16.0 | 269       |
| 13 | Unifying the Hydrogen Evolution and Oxidation Reactions Kinetics in Base by Identifying the Catalytic<br>Roles of Hydroxyl-Water-Cation Adducts. Journal of the American Chemical Society, 2019, 141,<br>3232-3239.                                  | 13.7 | 220       |
| 14 | Experimental Proof of the Bifunctional Mechanism for the Hydrogen Oxidation in Alkaline Media.<br>Angewandte Chemie - International Edition, 2017, 56, 15594-15598.                                                                                  | 13.8 | 194       |
| 15 | Nano-structured non-platinum catalysts for automotive fuel cell application. Nano Energy, 2015, 16, 293-300.                                                                                                                                         | 16.0 | 190       |
| 16 | Evolution Pathway from Iron Compounds to Fe <sub>1</sub> (II)–N <sub>4</sub> Sites through<br>Gas-Phase Iron during Pyrolysis. Journal of the American Chemical Society, 2020, 142, 1417-1423.                                                       | 13.7 | 185       |
| 17 | Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Feâ€Nâ€C Catalysts.<br>Angewandte Chemie - International Edition, 2017, 56, 8809-8812.                                                                                   | 13.8 | 176       |
| 18 | Roles of Mo Surface Dopants in Enhancing the ORR Performance of Octahedral PtNi Nanoparticles.<br>Nano Letters, 2018, 18, 798-804.                                                                                                                   | 9.1  | 162       |

QINGYING JIA

| #  | Article                                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | g-C <sub>3</sub> N <sub>4</sub> promoted MOF derived hollow carbon nanopolyhedra doped with<br>high density/fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards<br>acidic ORR and PEM fuel cells. Journal of Materials Chemistry A, 2019, 7, 5020-5030. | 10.3 | 152       |
| 20 | Activity Descriptor Identification for Oxygen Reduction on Platinum-Based Bimetallic Nanoparticles:<br><i>In Situ</i> Observation of the Linear Composition–Strain–Activity Relationship. ACS Nano, 2015, 9,<br>387-400.                                                                   | 14.6 | 148       |
| 21 | Metal and Metal Oxide Interactions and Their Catalytic Consequences for Oxygen Reduction Reaction.<br>Journal of the American Chemical Society, 2017, 139, 7893-7903.                                                                                                                      | 13.7 | 135       |
| 22 | Atomically Dispersed MnN <sub>4</sub> Catalysts <i>via</i> Environmentally Benign Aqueous<br>Synthesis for Oxygen Reduction: Mechanistic Understanding of Activity and Stability Improvements.<br>ACS Catalysis, 2020, 10, 10523-10534.                                                    | 11.2 | 123       |
| 23 | Composite Ni/NiO-Cr <sub>2</sub> O <sub>3</sub> Catalyst for Alkaline Hydrogen Evolution Reaction.<br>Journal of Physical Chemistry C, 2015, 119, 5467-5477.                                                                                                                               | 3.1  | 121       |
| 24 | Improved Oxygen Reduction Activity and Durability of Dealloyed PtCo <sub><i>x</i></sub> Catalysts<br>for Proton Exchange Membrane Fuel Cells: Strain, Ligand, and Particle Size Effects. ACS Catalysis, 2015,<br>5, 176-186.                                                               | 11.2 | 119       |
| 25 | Asymmetric Volcano Trend in Oxygen Reduction Activity of Pt and Non-Pt Catalysts: <i>In Situ</i> Identification of the Site-Blocking Effect. Journal of the American Chemical Society, 2017, 139, 1384-1387.                                                                               | 13.7 | 114       |
| 26 | Synthesis of highly-active Fe–N–C catalysts for PEMFC with carbide-derived carbons. Journal of<br>Materials Chemistry A, 2018, 6, 14663-14674.                                                                                                                                             | 10.3 | 94        |
| 27 | Resolving the Iron Phthalocyanine Redox Transitions for ORR Catalysis in Aqueous Media. Journal of<br>Physical Chemistry Letters, 2017, 8, 2881-2886.                                                                                                                                      | 4.6  | 89        |
| 28 | Hydrogen oxidation reaction in alkaline media: Relationship between electrocatalysis and electrochemical double-layer structure. Nano Energy, 2017, 41, 765-771.                                                                                                                           | 16.0 | 89        |
| 29 | Interfacial water shuffling the intermediates of hydrogen oxidation and evolution reactions in aqueous media. Energy and Environmental Science, 2020, 13, 3064-3074.                                                                                                                       | 30.8 | 80        |
| 30 | Effect of Pyrolysis Atmosphere and Electrolyte pH on the Oxygen Reduction Activity, Stability and<br>Spectroscopic Signature of FeN <sub>x</sub> Moieties in Fe-N-C Catalysts. Journal of the<br>Electrochemical Society, 2019, 166, F3311-F3320.                                          | 2.9  | 70        |
| 31 | Current understandings of the sluggish kinetics of the hydrogen evolution and oxidation reactions in base. Current Opinion in Electrochemistry, 2018, 12, 209-217.                                                                                                                         | 4.8  | 64        |
| 32 | Circumventing Metal Dissolution Induced Degradation of Pt-Alloy Catalysts in Proton Exchange<br>Membrane Fuel Cells: Revealing the Asymmetric Volcano Nature of Redox Catalysis. ACS Catalysis, 2016,<br>6, 928-938.                                                                       | 11.2 | 63        |
| 33 | Synthesis, Structure and Electrochemistry of Lithium Vanadium Phosphate Cathode Materials. Journal of the Electrochemical Society, 2011, 158, A1250.                                                                                                                                       | 2.9  | 59        |
| 34 | Experimental Sabatier plot for predictive design of active and stable Pt-alloy oxygen reduction reaction catalysts. Nature Catalysis, 2022, 5, 513-523.                                                                                                                                    | 34.4 | 57        |
| 35 | Palladium–Ceria Catalysts with Enhanced Alkaline Hydrogen Oxidation Activity for Anion Exchange<br>Membrane Fuel Cells. ACS Applied Energy Materials, 2019, 2, 4999-5008.                                                                                                                  | 5.1  | 56        |
| 36 | Engendering anion immunity in oxygen consuming cathodes based on Fe-Nx electrocatalysts:<br>Spectroscopic and electrochemical advanced characterizations. Applied Catalysis B: Environmental,<br>2016, 198, 318-324.                                                                       | 20.2 | 53        |

QINGYING JIA

| #  | Article                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Anion Resistant Oxygen Reduction Electrocatalyst in Phosphoric Acid Fuel Cell. ACS Catalysis, 2018, 8, 3833-3843.                                                                                                                                                       | 11.2 | 53        |
| 38 | Tuning Nb–Pt Interactions To Facilitate Fuel Cell Electrocatalysis. ACS Catalysis, 2017, 7, 4936-4946.                                                                                                                                                                  | 11.2 | 49        |
| 39 | Xâ€Ray Absorption Spectroscopy Characterizations on PGMâ€Free Electrocatalysts: Justification, Advantages, and Limitations. Advanced Materials, 2019, 31, e1805157.                                                                                                     | 21.0 | 48        |
| 40 | Cobalt Phthalocyanine Catalyzed Lithium-Air Batteries. Journal of the Electrochemical Society, 2013, 160, A1577-A1586.                                                                                                                                                  | 2.9  | 46        |
| 41 | The role of electronic properties of Pt and Pt alloys for enhanced reformate electro-oxidation in polymer electrolyte membrane fuel cells. Electrochimica Acta, 2013, 107, 155-163.                                                                                     | 5.2  | 42        |
| 42 | Compressive Strain Reduces the Hydrogen Evolution and Oxidation Reaction Activity of Platinum in Alkaline Solution. ACS Catalysis, 2021, 11, 8165-8173.                                                                                                                 | 11.2 | 37        |
| 43 | <i>In Situ</i> Spectroscopic Evidence for Ordered Core–Ultrathin Shell<br>Pt <sub>1</sub> Co <sub>1</sub> Nanoparticles with Enhanced Activity and Stability as Oxygen<br>Reduction Electrocatalysts. Journal of Physical Chemistry C, 2014, 118, 20496-20503.          | 3.1  | 36        |
| 44 | Spectroscopic in situ Measurements of the Relative Pt Skin Thicknesses and Porosities of Dealloyed<br>PtMn (Ni, Co) Electrocatalysts. Journal of Physical Chemistry C, 2015, 119, 757-765.                                                                              | 3.1  | 35        |
| 45 | The Role of OOH Binding Site and Pt Surface Structure on ORR Activities. Journal of the Electrochemical Society, 2014, 161, F1323-F1329.                                                                                                                                | 2.9  | 32        |
| 46 | Fundamental Aspects of ad-Metal Dissolution and Contamination in Low and Medium Temperature Fuel<br>Cell Electrocatalysis: A Cu Based Case Study Using In Situ Electrochemical X-ray Absorption<br>Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 4585-4596. | 3.1  | 30        |
| 47 | In Situ Identification of Non-Specific Adsorption of Alkali Metal Cations on Pt Surfaces and Their Catalytic Roles in Alkaline Solutions. ACS Catalysis, 2020, 10, 11099-11109.                                                                                         | 11.2 | 27        |
| 48 | Highly Active and Stable Fe–N–C Catalyst for Oxygen Depolarized Cathode Applications. Langmuir, 2017, 33, 9246-9253.                                                                                                                                                    | 3.5  | 23        |
| 49 | Experimental Proof of the Bifunctional Mechanism for the Hydrogen Oxidation in Alkaline Media.<br>Angewandte Chemie, 2017, 129, 15800-15804.                                                                                                                            | 2.0  | 23        |
| 50 | Operando X-ray absorption and infrared fuel cell spectroscopy. Electrochimica Acta, 2011, 56, 8827-8832.                                                                                                                                                                | 5.2  | 22        |
| 51 | The Challenge of Achieving a High Density of Fe-Based Active Sites in a Highly Graphitic Carbon Matrix.<br>Catalysts, 2019, 9, 144.                                                                                                                                     | 3.5  | 22        |
| 52 | Physical vapor deposition process for engineering Pt based oxygen reduction reaction catalysts on<br>NbOx templated carbon support. Journal of Power Sources, 2020, 451, 227709.                                                                                        | 7.8  | 22        |
| 53 | Enhancement of oxygen reduction reaction activity by grain boundaries in platinum nanostructures.<br>Nano Research, 2020, 13, 3310-3314.                                                                                                                                | 10.4 | 17        |
| 54 | Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Feâ€Nâ€C Catalysts.<br>Angewandte Chemie, 2017, 129, 8935-8938.                                                                                                                             | 2.0  | 16        |

QINGYING JIA

| #  | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | 1D PtCo nanowires as catalysts for PEMFCs with low Pt loading. Science China Materials, 2022, 65, 704-711.                                                                                                   | 6.3  | 16        |
| 56 | Actualizing In Situ X-ray Absorption Spectroscopy Characterization of PEMFC-Cycled Pt-Electrodes.<br>Journal of the Electrochemical Society, 2018, 165, F597-F603.                                           | 2.9  | 12        |
| 57 | In situ XAFS studies of the oxygen reduction reaction on carbon supported Pt and PtNi(1:1) catalysts.<br>Journal of Physics: Conference Series, 2009, 190, 012157.                                           | 0.4  | 11        |
| 58 | Understanding the ORR Electrocatalysis on Co–Mn Oxides. Journal of Physical Chemistry C, 2021, 125, 25470-25477.                                                                                             | 3.1  | 11        |
| 59 | Electrochemical and In Situ Spectroscopic Evidences toward Empowering Ruthenium-Based Chalcogenides as Solid Acid Fuel Cell Cathodes. ACS Catalysis, 2017, 7, 581-591.                                       | 11.2 | 10        |
| 60 | In situ X-ray absorption spectroscopy on probing the enhanced electrochemical activity of ternary PtRu@Pb catalysts. Electrochimica Acta, 2013, 108, 288-295.                                                | 5.2  | 7         |
| 61 | <i>Operando</i> X-ray absorption spectroscopy of a Pd/Î <sup>3</sup> -NiOOH 2 nm cubes hydrogen oxidation catalyst in an alkaline membrane fuel cell. Catalysis Science and Technology, 2021, 11, 1337-1344. | 4.1  | 4         |