
## Robert D Hancock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4311319/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A study of the complexes of Hg(II) with polypyridyl ligands by Fluorescence, absorbance Spectroscopy,<br>and DFT calculations. The effect of ligand preorganization and relativistic effects on complex<br>stability. Inorganica Chimica Acta, 2022, 530, 120670.                                        | 2.4 | 3         |
| 2  | Evidence for Participation of 4f and 5d Orbitals in Lanthanide Metal–Ligand Bonding and That Y(III) Has<br>Less of This Complex-Stabilizing Ability. A Thermodynamic, Spectroscopic, and DFT Study of Their<br>Complexation by the Nitrogen Donor Ligand TPEN. Inorganic Chemistry, 2022, 61, 4627-4638. | 4.0 | 11        |
| 3  | Two Ligands of Interest in Recovering Uranium from the Oceans: The Correct Formation Constants of the Uranyl(VI) Cation with 2,2′-Bipyridyl-6,6′-dicarboxylic Acid and 1,10-Phenanthroline-2,9-dicarboxylic Acid. Inorganic Chemistry, 2022, 61, 9960-9967.                                              | 4.0 | 6         |
| 4  | Strategies for a fluorescent sensor with receptor and fluorophore designed for the recognition of heavy metal ions. Inorganica Chimica Acta, 2020, 499, 119181.                                                                                                                                          | 2.4 | 14        |
| 5  | Fluorescence and Metal-Binding Properties of the Highly Preorganized Tetradentate Ligand<br>2,2′-Bi-1,10-phenanthroline and Its Remarkable Affinity for Cadmium(II). Inorganic Chemistry, 2020, 59,<br>13117-13127.                                                                                      | 4.0 | 13        |
| 6  | Exciplex formation as an approach to selective Copper(II) fluorescent sensors. Inorganica Chimica Acta, 2020, 506, 119544.                                                                                                                                                                               | 2.4 | 6         |
| 7  | Mono-N-benzyl cyclen: A highly selective, multi-functional "turn-on―fluorescence sensor for Pb2+,<br>Hg2+ and Zn2+. Polyhedron, 2020, 179, 114366.                                                                                                                                                       | 2.2 | 6         |
| 8  | Complexation of lanthanides and other metal ions by the polypyridyl ligand quaterpyridine: Relation<br>between metal ion size, chelate ring size, and complex stability. Inorganica Chimica Acta, 2019, 488,<br>19-27.                                                                                   | 2.4 | 10        |
| 9  | Indole-based fluorescence sensors for both cations and anions. Inorganica Chimica Acta, 2018, 482, 478-490.                                                                                                                                                                                              | 2.4 | 8         |
| 10 | Exciplex Formation and Aggregation Induced Emission in Diâ€( <i>N</i> â€benzyl)cyclen and Its Complexes –<br>Selective Fluorescence with Lead(II), and as the Cadmium(II) Complex, with the Chloride Ion. European<br>Journal of Inorganic Chemistry, 2018, 2018, 3736-3747.                             | 2.0 | 9         |
| 11 | Effects of anion coordination on the fluorescence of a photo-induced electron transfer (PET) sensor complexed with metal ions. Polyhedron, 2017, 130, 47-57.                                                                                                                                             | 2.2 | 17        |
| 12 | Highly Preorganized Ligand 1,10-Phenanthroline-2,9-dicarboxylic Acid for the Selective Recovery of<br>Uranium from Seawater in the Presence of Competing Vanadium Species. Inorganic Chemistry, 2016, 55,<br>10818-10829.                                                                                | 4.0 | 42        |
| 13 | Amidoximes as ligand functionalities for braided polymeric materials for the recovery of uranium from seawater. Polyhedron, 2016, 109, 81-91.                                                                                                                                                            | 2.2 | 33        |
| 14 | Quantifying the binding strength of salicylaldoxime–uranyl complexes relative to competing<br>salicylaldoxime–transition metal ion complexes in aqueous solution: a combined experimental and<br>computational study. Dalton Transactions, 2016, 45, 9051-9064.                                          | 3.3 | 23        |
| 15 | Spectroscopic, structural, and thermodynamic aspects of the stereochemically active lone pair on lead(II): Structure of the lead(II) dota complex. Polyhedron, 2015, 91, 120-127.                                                                                                                        | 2.2 | 31        |
| 16 | Controlling the Fluorescence Response of PET Sensors via the Metal-Ion π-Contacting Ability of the<br>Fluorophore: Coumarin, a Weaker π Contacter. Inorganic Chemistry, 2015, 54, 9976-9988.                                                                                                             | 4.0 | 15        |
| 17 | The Effect of ï€ Contacts between Metal Ions and Fluorophores on the Fluorescence of PET Sensors:<br>Implications for Sensor Design for Cations and Anions. Inorganic Chemistry, 2014, 53, 9014-9026.                                                                                                    | 4.0 | 38        |
| 18 | Mechanism of chelation enhanced fluorescence in complexes of cadmium(ii), and a possible new type of anion sensor. Chemical Communications, 2013, 49, 9749.                                                                                                                                              | 4.1 | 45        |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A DFT study of the affinity of lanthanide and actinide ions for sulfur-donor and nitrogen-donor ligands in aqueous solution. Inorganica Chimica Acta, 2013, 396, 101-107.                                                                      | 2.4  | 13        |
| 20 | Role of Fluorophore–Metal Interaction in Photoinduced Electron Transfer (PET) Sensors:<br>Time-Dependent Density Functional Theory (TDDFT) Study. Journal of Physical Chemistry A, 2013, 117,<br>13345-13355.                                  | 2.5  | 59        |
| 21 | A DFT analysis of the effect of chelate ring size on metal ion selectivity in complexes of polyamine<br>ligands. Polyhedron, 2013, 52, 284-293.                                                                                                | 2.2  | 11        |
| 22 | The pyridyl group in ligand design for selective metal ion complexation and sensing. Chemical Society Reviews, 2013, 42, 1500-1524.                                                                                                            | 38.1 | 289       |
| 23 | Complexation of Am(III) and Nd(III) by 1,10-Phenanthroline-2,9-Dicarboxylic Acid. Journal of Solution<br>Chemistry, 2013, 42, 211-225.                                                                                                         | 1.2  | 27        |
| 24 | Selectivity of the Highly Preorganized Tetradentate Ligand 2,9-Di(pyrid-2-yl)-1,10-phenanthroline for<br>Metal lons in Aqueous Solution, Including Lanthanide(III) Ions and the Uranyl(VI) Cation. Inorganic<br>Chemistry, 2013, 52, 15-27.    | 4.0  | 33        |
| 25 | Do Nonbonded HH Interactions in Phenanthrene Stabilize It Relative to Anthracene? A Possible<br>Resolution to this Question and Its Implications for Ligands such as 2,2′-Bipyridyl. Journal of Physical<br>Chemistry A, 2012, 116, 8572-8583. | 2.5  | 33        |
| 26 | Affinity of two highly preorganized ligands for the base metal ions Co(II), Ni(II) and Cu(II): A thermodynamic, crystallographic and fluorometric study. Polyhedron, 2012, 46, 139-148.                                                        | 2.2  | 7         |
| 27 | Mechanism of "Turn-on―Fluorescent Sensors for Mercury(II) in Solution and Its Implications for<br>Ligand Design. Inorganic Chemistry, 2012, 51, 10904-10915.                                                                                   | 4.0  | 113       |
| 28 | Metal-Ion-Complexing Properties of 2-(Pyrid-2′-yl)-1,10-phenanthroline, a More Preorganized Analogue<br>of Terpyridyl. A Crystallographic, Fluorescence, and Thermodynamic Study. Inorganic Chemistry, 2012,<br>51, 3007-3015.                 | 4.0  | 22        |
| 29 | Complexation of Metal Ions, Including Alkali-Earth and Lanthanide(III) Ions, in Aqueous Solution by the<br>Ligand 2,2′,6′,2′′-Terpyridyl. Inorganic Chemistry, 2011, 50, 2764-2770.                                                            | 4.0  | 51        |
| 30 | Metal Ion Complexing Properties of Dipyridoacridine, a Highly Preorganized Tridentate Homologue of 1,10-Phenanthroline. Inorganic Chemistry, 2011, 50, 3785-3790.                                                                              | 4.0  | 25        |
| 31 | Metal ion selectivities of the highly preorganized tetradentate ligand<br>1,10-phenanthroline-2,9-dicarboxamide with lanthanide(III) ions and some actinide ions. Radiochimica<br>Acta, 2011, 99, 161-166.                                     | 1.2  | 58        |
| 32 | Unusual Metal Ion Selectivities of the Highly Preorganized Tetradentrate Ligand<br>1,10-Phenanthroline-2,9-dicarboxamide: A Thermodynamic and Fluorescence Study. Inorganic Chemistry,<br>2011, 50, 8348-8355.                                 | 4.0  | 46        |
| 33 | Metal Ion Coordinating Properties of the Highly Preorganized Tetradentate Ligand<br>1,10-Phenanthroline-2,9-dicarboxaldehyde-2,9-dioxime. European Journal of Inorganic Chemistry, 2011,<br>2011, 2706-02711.                                  | 2.0  | 5         |
| 34 | Control of Metal Ion Size-Based Selectivity through Chelate Ring Geometry. Metal Ion Complexing<br>Properties of 2,2′-Biimidazole. Inorganic Chemistry, 2010, 49, 5033-5039.                                                                   | 4.0  | 27        |
| 35 | Complexes of the highly preorganized ligand PDALC (2,9-bis(hydroxymethyl)-1,10-phenanthroline) with trivalent lanthanides. A thermodynamic and crystallographic study. Inorganica Chimica Acta, 2010, 363, 3694-3699.                          | 2.4  | 17        |
| 36 | Structural, molecular mechanics, and DFT study of cadmium(II) in its crown ether complexes with<br>axially coordinated ligands, and of the binding of thiocyanate to cadmium(II). Inorganica Chimica Acta,<br>2009, 362, 1122-1128.            | 2.4  | 9         |

| #  | Article                                                                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Strong Metal Ion Size Based Selectivity of the Highly Preorganized Ligand PDA<br>(1,10-Phenanthroline-2,9-dicarboxylic Acid) with Trivalent Metal Ions. A Crystallographic,<br>Fluorometric, and Thermodynamic Study. Inorganic Chemistry, 2009, 48, 7853-7863.                                                        | 4.0  | 61        |
| 38 | Possible Steric Control of the Relative Strength of Chelation Enhanced Fluorescence for Zinc(II)<br>Compared to Cadmium(II): Metal Ion Complexing Properties of Tris(2-quinolylmethyl)amine, a<br>Crystallographic, UVâ^'Visible, and Fluorometric Study. Inorganic Chemistry, 2009, 48, 1407-1415.                    | 4.0  | 144       |
| 39 | Complexation of Mercury(I) and Mercury(II) by 18-Crown-6: Hydrothermal Synthesis of the Mercuric<br>Nitrite Complex. Inorganic Chemistry, 2009, 48, 11724-11733.                                                                                                                                                       | 4.0  | 16        |
| 40 | Complexation of Metal Ions of Higher Charge by the Highly Preorganized Tetradentate Ligand<br>2,9-Bis(hydroxymethyl)-1,10-Phenanthroline. A Crystallographic and Thermodynamic Study. Inorganic<br>Chemistry, 2009, 48, 8201-8209.                                                                                     | 4.0  | 33        |
| 41 | A thermodynamic and crystallographic study of complexes of the highly preorganized ligand<br>8-hydroxyquinoline-2-carboxylic acid. Inorganica Chimica Acta, 2008, 361, 1937-1946.                                                                                                                                      | 2.4  | 18        |
| 42 | Metal Ion Complexing Properties of the Highly Preorganized Ligand<br>2,9-bis(Hydroxymethyl)-1,10-phenanthroline: A Crystallographic and Thermodynamic Study. Inorganic<br>Chemistry, 2008, 47, 10342-10348.                                                                                                            | 4.0  | 40        |
| 43 | Enhanced Metal Ion Selectivity of 2,9-Di-(pyrid-2-yl)-1,10-phenanthroline and Its Use as a Fluorescent<br>Sensor for Cadmium(II). Journal of the American Chemical Society, 2008, 130, 1420-1430.                                                                                                                      | 13.7 | 179       |
| 44 | Affinity of the Highly Preorganized Ligand PDA (1,10-Phenanthroline-2,9-dicarboxylic acid) for Large<br>Metal lons of Higher Charge. A Crystallographic and Thermodynamic Study of PDA Complexes of<br>Thorium(IV) and the Uranyl(VI) ion. Inorganic Chemistry, 2008, 47, 2000-2010.                                   | 4.0  | 99        |
| 45 | The Affinity of Indium(III) for Nitrogen-donor Ligands in Aqueous Solution. A Study of the Complexing of Indium(III) with Polyamines by Differential Pulse Voltammetry, Density Functional Theory, and Crystallography. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2007, 62, 386-396.    | 0.7  | 9         |
| 46 | Metal ion recognition in aqueous solution by highly preorganized non-macrocyclic ligands.<br>Coordination Chemistry Reviews, 2007, 251, 1678-1689.                                                                                                                                                                     | 18.8 | 81        |
| 47 | Metal-Ion Selectivity Produced by C-Alkyl Substituents on the Bridges of Chelating Ligands:Â The<br>Importance of Short Hâr'H Nonbonded van der Waals Contacts in Controlling Metal-Ion Selectivity. A<br>Thermodynamic, Molecular Mechanics, and Crystallographic Study. Inorganic Chemistry, 2007, 46,<br>4749-4757. | 4.0  | 22        |
| 48 | The amide oxygen donor. Metal ion coordinating properties of the ligand nitrilotriacetamide. A thermodynamic and crystallographic study. Dalton Transactions, 2006, , 2001.                                                                                                                                            | 3.3  | 25        |
| 49 | Density Functional Theory-Based Prediction of Some Aqueous-Phase Chemistry of Superheavy Element<br>111. Roentgenium(I) Is the â€~Softest' Metal Ion. Inorganic Chemistry, 2006, 45, 10780-10785.                                                                                                                      | 4.0  | 23        |
| 50 | Complexes of Greatly Enhanced Thermodynamic Stability and Metal Ion Size-Based Selectivity, Formed<br>by the Highly Preorganized Non-Macrocyclic Ligand 1,10-Phenanthroline-2,9-dicarboxylic Acid. A<br>Thermodynamic and Crystallographic Study. Inorganic Chemistry, 2006, 45, 9306-9314.                            | 4.0  | 72        |
| 51 | A fluorescent ligand rationally designed to be selective for zinc(II) over larger metal ions. The<br>structures of the zinc(II) and cadmium(II) complexes of<br>N,N-bis(2-methylquinoline)-2-(2-aminoethyl)pyridine. Inorganica Chimica Acta, 2005, 358, 3958-3966.                                                    | 2.4  | 64        |
| 52 | Determination of formation constants for complexes of very high stability: logβ4 for the [Pd(CN)4]2â~'<br>ion. Inorganica Chimica Acta, 2005, 358, 4473-4480.                                                                                                                                                          | 2.4  | 19        |
| 53 | Factors Controlling Metal-Ion Selectivity in the Binding Sites of Calcium-Binding Proteins. The<br>Metal-Binding Properties of Amide Donors. A Crystallographic and Thermodynamic Study. Inorganic<br>Chemistry, 2005, 44, 8495-8502.                                                                                  | 4.0  | 39        |
| 54 | N2S2Ni Metallodithiolate Complexes as Ligands:Â Structural and Aqueous Solution Quantitative<br>Studies of the Ability of Metal Ions to Form Mâ^'Sâ^'Ni Bridges to Mercapto Groups Coordinated to<br>Nickel(II). Implications for Acetyl Coenzyme A Synthase. Inorganic Chemistry, 2005, 44, 875-883.                  | 4.0  | 28        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Density Functional Theory-Based Prediction of the Formation Constants of Complexes of Ammonia in<br>Aqueous Solution:Â Indications of the Role of Relativistic Effects in the Solution Chemistry of Gold(I).<br>Inorganic Chemistry, 2005, 44, 7175-7183.                                                                                                                               | 4.0 | 34        |
| 56 | The structure of the 11-coordinate barium complex of the pendant-donor macrocycle<br>1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane: an analysis of the coordination<br>numbers of barium(II) in its complexes. Inorganica Chimica Acta, 2004, 357, 723-727.                                                                                                         | 2.4 | 20        |
| 57 | Prediction of formation constants of metal–ammonia complexes in aqueous solution using density functional theory calculations. Chemical Communications, 2004, , 534-535.                                                                                                                                                                                                                | 4.1 | 28        |
| 58 | Structural Effects of the Lone Pair on Lead(II), and Parallels with the Coordination Geometry of<br>Mercury(II). Does the Lone Pair on Lead(II) Form H-Bonds? Structures of the Lead(II) and Mercury(II)<br>Complexes of the Pendant-Donor Macrocycle DOTAM<br>(1,4,7,10-Tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane). Inorganic Chemistry, 2004, 43,                      | 4.0 | 135       |
| 59 | Possible Role of Relativistic Effects in the Plasticity of the Coordination Geometry of Cadmium(II). A Voltammetric Study of the Stability of the Complexes of Cadmium(II) with 12-Crown-4,15-Crown-5 and 18-Crown-6 in Aqueous Solution and the Structures of [Cd(benzo-18-crown-6)(NCS)2] and [K(18-crown-6)][Cd(SCN)3]. Inorganic Chemistry, 2004, 43, 4456-4463.                    | 4.0 | 42        |
| 60 | Structure of the copper(II) complex of the reinforced ligand N,Nâ€2-bis(trans-2-hydroxycyclohexyl)-<br>trans-cyclohexane-1,2-diamine and the metal-ion-size-based selectivity produced by cyclohexanediyl<br>bridges *. Journal of the Chemical Society Dalton Transactions, 1997, , 2831-2836.                                                                                         | 1.1 | 17        |
| 61 | Critical ReviewApproaches to Predicting Stability ConstantsA Critical Review. Analyst, The, 1997, 122, 51R-58R.                                                                                                                                                                                                                                                                         | 3.5 | 39        |
| 62 | Synthesis, stability and structure of the complex of bismuth(III) with the nitrogen-donor macrocycle 1,4,7,10-tetraazacyclododecane. The role of the lone pair on bismuth(III) and lead(II) in determining co-ordination geometry. Journal of the Chemical Society Dalton Transactions, 1997, , 901-908.                                                                                | 1.1 | 60        |
| 63 | Structure and stability of complexes of macrocyclic ligands bearing 2-hydroxycyclohexyl groups.<br>Structure of the copper(II) complex of 1-(2-hydroxycyclohexyl)-1,4,7,10-tetraazacyclododecane and the<br>strontium(II) complex of 7,16-bis(2-hydroxycyclohexyl)-1,4,10,13-tetraoxa-7,16-diazacyclooctadec ane.<br>Iournal of the Chemical Society Dalton Transactions. 1997 939-944. | 1.1 | 16        |
| 64 | Chelate ring geometry, and the metal ion selectivity of macrocyclic ligands. Some recent developments. Supramolecular Chemistry, 1996, 6, 401-407.                                                                                                                                                                                                                                      | 1.2 | 17        |
| 65 | Hydroxo-bridged dinuclear cobalt(II) complexes of OBISDIEN and OBISTREN as oxygen carriers.<br>Supramolecular Chemistry, 1996, 6, 333-340.                                                                                                                                                                                                                                              | 1.2 | 4         |
| 66 | Hard and Soft Acid-Base Behavior in Aqueous Solution: Steric Effects Make Some Metal Ions Hard: A<br>Quantitative Scale of Hardness-Softness for Acids and Bases. Journal of Chemical Education, 1996, 73,<br>654.                                                                                                                                                                      | 2.3 | 93        |
| 67 | Study of protonation of 1,4,7-tris(2-hydroxyethyl)-1,4,7-triazacyclononane, and its complexes with metal ions, by crystallography, polarography, potentiometry, molecular mechanics and NMR.<br>Inorganica Chimica Acta, 1996, 246, 159-169.                                                                                                                                            | 2.4 | 26        |
| 68 | Metal Complexes in Aqueous Solutions. , 1996, , .                                                                                                                                                                                                                                                                                                                                       |     | 409       |
| 69 | The effect of chelate ring size on metal ion size-based selectivity in polyamine ligands containing pyridyl and saturated nitrogen donor groups. Analytica Chimica Acta, 1995, 312, 307-321.                                                                                                                                                                                            | 5.4 | 49        |
| 70 | Pulse polarography study of the complexes of lead with azacrown [2,2,2]cryptand in the presence of an excess of competing sodium ion. Electroanalysis, 1995, 7, 763-769.                                                                                                                                                                                                                | 2.9 | 8         |
| 71 | Complexation of Billl by nitrogen donor ligands. A polarographic study. Polyhedron, 1995, 14, 1699-1707.                                                                                                                                                                                                                                                                                | 2.2 | 24        |
| 72 | EVALUATION OF A DIETHANOLAMINE CHELATING RESIN USING TWO-PHASE POTENTIOMETRY. Solvent Extraction and Ion Exchange, 1995, 13, 591-611.                                                                                                                                                                                                                                                   | 2.0 | 10        |

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The Amide Oxygen as a Donor Group. Metal Ion Complexing Properties of Tetra-N-acetamide Substituted<br>Cyclen: A Crystallographic, NMR, Molecular Mechanics, and Thermodynamic Study. Journal of the<br>American Chemical Society, 1995, 117, 6698-6707. | 13.7 | 113       |
| 74 | Synthesis and structure of a complex of bismuth(III) with a nitrogen donor macrocycle. Journal of the Chemical Society Chemical Communications, 1995, , 2365.                                                                                            | 2.0  | 24        |
| 75 | The Affinity of Plutonium(IV) for Nitrogen Donor Ligands. Radiochimica Acta, 1994, 64, 15-22.                                                                                                                                                            | 1.2  | 11        |
| 76 | THE AFFINITY OF THE VANADYL(IV) ION FOR NITROGEN DONOR LIGANDS. Journal of Coordination Chemistry, 1994, 31, 135-146.                                                                                                                                    | 2.2  | 11        |
| 77 | The Chelate, Macrocyclic, and Cryptate Effects. ACS Symposium Series, 1994, , 240-254.                                                                                                                                                                   | 0.5  | 9         |
| 78 | The affinity of bismuth(III) for nitrogen-donor ligands. Journal of the Chemical Society Dalton<br>Transactions, 1993, , 2895.                                                                                                                           | 1.1  | 51        |
| 79 | Chelate ring size and metal ion selection. The basis of selectivity for metal ions in open-chain ligands<br>and macrocycles. Journal of Chemical Education, 1992, 69, 615.                                                                               | 2.3  | 206       |
| 80 | Effect of cyclohexylene bridges on the metal ion size based selectivity of ligands in aqueous solution.<br>Inorganic Chemistry, 1991, 30, 3525-3529.                                                                                                     | 4.0  | 45        |
| 81 | Some correlations involving the stability of complexes of transuranium metal ions and ligands with negatively charged oxygen donors. Inorganica Chimica Acta, 1991, 182, 229-232.                                                                        | 2.4  | 45        |
| 82 | The Affinity of Gallium(III) and Indium(III) for Nitrogen Donor Ligands. Journal of Coordination Chemistry, 1991, 23, 221-232.                                                                                                                           | 2.2  | 12        |
| 83 | Molecular mechanics calculations and metal ion recognition. Accounts of Chemical Research, 1990, 23, 253-257.                                                                                                                                            | 15.6 | 231       |
| 84 | Ligand design for complexation in aqueous solution. 2. Chelate ring size as a basis for control of size-based selectivity for metal ions. Inorganic Chemistry, 1990, 29, 1968-1974.                                                                      | 4.0  | 72        |
| 85 | Ligand design for selective complexation of metal ions in aqueous solution. Chemical Reviews, 1989, 89, 1875-1914.                                                                                                                                       | 47.7 | 1,089     |
| 86 | Stability of the complex of nickel(II) with cyclam. Inorganica Chimica Acta, 1989, 160, 245-248.                                                                                                                                                         | 2.4  | 21        |
| 87 | Metal ion recognition in ligands with negatively charged oxygen donor groups. Complexation of<br>iron(III), gallium(III), indium(III), aluminum(III), and other highly charged metal ions. Inorganic<br>Chemistry, 1989, 28, 2189-2195.                  | 4.0  | 262       |
| 88 | Ligand design for complexation in aqueous solution. 1. Neutral oxygen donor bearing groups as a means of controlling size-based selectivity for metal ions. Inorganic Chemistry, 1989, 28, 187-194.                                                      | 4.0  | 152       |
| 89 | The Stereochemical activity or non-activity of the â€~Inert' pair of electrons on lead(II) in relation to its<br>complex stability and structural properties. Some considerations in ligand design. Inorganica Chimica<br>Acta, 1988, 154, 229-238.      | 2.4  | 232       |
| 90 | The Chelate, Cryptate and Macrocyclic Effects. Comments on Inorganic Chemistry, 1988, 6, 237-284.                                                                                                                                                        | 5.2  | 136       |

| #   | Article                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | The stability of nickel(II) complexes of tetra-aza macrocycles. Journal of the Chemical Society Dalton<br>Transactions, 1985, , 1877-1880.                                                                                                                                              | 1.1  | 26        |
| 92  | Stability of ammonia complexes that are unstable to hydrolysis in water. Inorganic Chemistry, 1985, 24, 3076-3080.                                                                                                                                                                      | 4.0  | 52        |
| 93  | Anomalous metal ion size selectivity of tetraaza macrocycles. Inorganic Chemistry, 1985, 24, 3378-3381.                                                                                                                                                                                 | 4.0  | 131       |
| 94  | SOME FACTORS INFLUENCING THE STABILITY OF COMPLEXES WITH LIGANDS CONTAINING NEUTRAL OXYGEN DONOR LIGANDS, INCLUDING CROWN ETHERS. Journal of Coordination Chemistry, 1984, 13, 309-314.                                                                                                 | 2.2  | 12        |
| 95  | THE EFFECT OF NON-COORDINATED CHARGED GROUPS ON THE STABILITY OF COMPLEXES IN AQUEOUS SOLUTION. THE STABILITY OF COMPLEXES OF 2,3-DIHYDROXYNAPHTHALENE-6-SULFONIC ACID. Journal of Coordination Chemistry, 1984, 13, 143-151.                                                           | 2.2  | 14        |
| 96  | Crystal structure of the Ni(ClO4)2 complex of the mixed donor macrocycle, 9-ane N2O: Resolution of disorder by force-field calculation. Journal of Crystallographic and Spectroscopic Research, 1984, 14, 261-268.                                                                      | 0.2  | 13        |
| 97  | N,N',N"',N'''-Tetrabis(2-hydroxyethyl)cyclam a nitrogen-donor macrocycle with rapid metalation reactions. Inorganic Chemistry, 1984, 23, 1487-1489.                                                                                                                                     | 4.0  | 66        |
| 98  | Molecular mechanics and crystallographic study of hole sizes in nitrogen-donor tetraaza macrocycles. Journal of the American Chemical Society, 1984, 106, 5947-5955.                                                                                                                    | 13.7 | 157       |
| 99  | Origin of the high ligand field strength and macrocyclic enthalpy in complexes of nitrogen-donor macrocycles. Journal of the American Chemical Society, 1984, 106, 3198-3207.                                                                                                           | 13.7 | 84        |
| 100 | Relationship between Lewis acid-base behavior in the gas phase and in aqueous solution. 1. Role of inductive, polarizability, and steric effects in amine ligands. Inorganic Chemistry, 1983, 22, 2531-2535.                                                                            | 4.0  | 31        |
| 101 | Parametric correlation of formation constants in aqueous solution. 2. Ligands with large donor atoms. Inorganic Chemistry, 1980, 19, 2709-2714.                                                                                                                                         | 4.0  | 71        |
| 102 | Affinity of lanthanoid(III) ions for nitrogen-donor ligands in aqueous solution. Journal of the<br>Chemical Society Dalton Transactions, 1979, , 1384.                                                                                                                                  | 1.1  | 16        |
| 103 | Empirical force field calculations of strain-energy contributions to the thermodynamics of complex formation. 3. Chelate effect in complexes of polyamines. Inorganic Chemistry, 1979, 18, 2847-2852.                                                                                   | 4.0  | 43        |
| 104 | Parametric correlation of formation constants in aqueous solution. 1. Ligands with small donor atoms. Inorganic Chemistry, 1978, 17, 560-564.                                                                                                                                           | 4.0  | 48        |
| 105 | Empirical force-field calculations of strain-energy contributions to the thermodynamics of complex formation. Part 1. The difference in stability between complexes containing five- and six-membered chelate rings. Journal of the Chemical Society Dalton Transactions, 1978, , 1438. | 1.1  | 44        |
| 106 | The chelate effect: a simple quantitative approach. Journal of the Chemical Society Dalton Transactions, 1976, , 1096.                                                                                                                                                                  | 1.1  | 38        |
| 107 | Molecular Mechanics Calculations as a Tool in Coordination Chemistry. Progress in Inorganic Chemistry, 0, , 187-291.                                                                                                                                                                    | 3.0  | 70        |