
Ana Clara Carrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4310719/publications.pdf Version: 2024-02-01

ANA CLADA CADDEDA

#	Article	IF	CITATIONS
1	Role of NRF2 in Lung Cancer. Cells, 2021, 10, 1879.	4.1	35
2	Fluctuations in AKT and PTEN Activity Are Linked by the E3 Ubiquitin Ligase cCBL. Cells, 2021, 10, 2803.	4.1	4
3	Persistent regulatory T ell response 2 years after 3 years of grass tablet <scp>SLIT</scp> : Links to reduced eosinophil counts, <scp>slgE</scp> levels, and clinical benefit. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 349-360.	5.7	46
4	Functions of Nuclear Polyphosphoinositides. Handbook of Experimental Pharmacology, 2019, 259, 163-181.	1.8	1
5	The Opposing Roles of PIK3R1/p851 \pm and PIK3R2/p851 ² in Cancer. Trends in Cancer, 2019, 5, 233-244.	7.4	82
6	The cell biology behind the oncogenic PIP3 lipids. Journal of Cell Science, 2019, 132, .	2.0	18
7	Targeted depletion of <i>PIK3R2</i> induces regression of lung squamous cell carcinoma. Oncotarget, 2016, 7, 85063-85078.	1.8	16
8	E-cadherin downregulation sensitizes PTEN-mutant tumors to PI3Kβ silencing. Oncotarget, 2016, 7, 84054-84071.	1.8	10
9	Phosphoinositide 3-Kinase Beta Protects Nuclear Envelope Integrity by Controlling RCC1 Localization and Ran Activity. Molecular and Cellular Biology, 2015, 35, 249-263.	2.3	12
10	Inhibition of PI3Kδ Reduces Kidney Infiltration by Macrophages and Ameliorates Systemic Lupus in the Mouse. Journal of Immunology, 2014, 193, 544-554.	0.8	41
11	Cell Activation-Induced Phosphoinositide 3-Kinase Alpha/Beta Dimerization Regulates PTEN Activity. Molecular and Cellular Biology, 2014, 34, 3359-3373.	2.3	15
12	Grass tablet sublingual immunotherapy downregulates theÂTH2 cytokine response followed by regulatory T-cellÂgeneration. Journal of Allergy and Clinical Immunology, 2014, 133, 130-138.e2.	2.9	125
13	Phosphoinositide 3-kinase p85beta regulates invadopodium formation. Biology Open, 2014, 3, 924-936.	1.2	20
14	CXCL12-Mediated Murine Neural Progenitor Cell Movement Requires PI3KÎ ² Activation. Molecular Neurobiology, 2013, 48, 217-231.	4.0	8
15	Suppressor of cytokine signaling 1 blocks mitosis in human melanoma cells. Cellular and Molecular Life Sciences, 2013, 70, 545-558.	5.4	17
16	Phosphoinositide 3-kinase beta controls replication factor C assembly and function. Nucleic Acids Research, 2013, 41, 855-868.	14.5	6
17	PI3K p110Î ³ Deletion Attenuates Murine Atherosclerosis by Reducing Macrophage Proliferation but Not Polarization or Apoptosis in Lesions. PLoS ONE, 2013, 8, e72674.	2.5	17
18	PI3K p110δ Is Expressed by gp38â^'CD31+ and gp38+CD31+ Spleen Stromal Cells and Regulates Their CCL19, CCL21, and LTβR mRNA Levels. PLoS ONE, 2013, 8, e72960.	2.5	2

ANA CLARA CARRERA

#	Article	IF	CITATIONS
19	A promoter DNA demethylation landscape of human hematopoietic differentiation. Nucleic Acids Research, 2012, 40, 116-131.	14.5	97
20	p85 l² increases phosphoinositide 3-kinase activity and accelerates tumor progression . Cell Cycle, 2012, 11, 3523-3524.	2.6	2
21	p85β phosphoinositide 3-kinase subunit regulates tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11318-11323.	7.1	56
22	Phosphoinositide 3-kinase \hat{l}^2 regulates chromosome segregation in mitosis. Molecular Biology of the Cell, 2012, 23, 4526-4542.	2.1	19
23	Enhanced Phosphoinositide 3-Kinase δ Activity Is a Frequent Event in Systemic Lupus Erythematosus That Confers Resistance to Activation-Induced T Cell Death. Journal of Immunology, 2011, 187, 2376-2385.	0.8	69
24	Nuclear but Not Cytosolic Phosphoinositide 3-Kinase Beta Has an Essential Function in Cell Survival. Molecular and Cellular Biology, 2011, 31, 2122-2133.	2.3	72
25	Abi1/Hssh3bp1 pY213 links Abl kinase signaling to p85 regulatory subunit of Plâ€3 kinase in regulation of macropinocytosis in LNCaP cells. FEBS Letters, 2010, 584, 3279-3286.	2.8	29
26	Nuclear phosphoinositide 3-kinase β controls double-strand break DNA repair. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7491-7496.	7.1	148
27	Phosphatidylinositol 3-Kinase Î ³ Inhibition Ameliorates Inflammation and Tumor Growth in a Model of Colitis-Associated Cancer. Gastroenterology, 2010, 138, 1374-1383.	1.3	36
28	Specific function of phosphoinositide 3-kinase beta in the control of DNA replication. Proceedings of the United States of America, 2009, 106, 7525-7530.	7.1	75
29	SADB kinases license centrosome replication. Cell Cycle, 2009, 8, 4005-4006.	2.6	9
30	SADB phosphorylation of Î ³ -tubulin regulates centrosome duplication. Nature Cell Biology, 2009, 11, 1081-1092.	10.3	73
31	PI3KÎ ³ activation by CXCL12 regulates tumor cell adhesion and invasion. Biochemical and Biophysical Research Communications, 2009, 388, 199-204.	2.1	28
32	p85β phosphoinositide 3-kinase regulates CD28 coreceptor function. Blood, 2009, 113, 3198-3208.	1.4	34
33	Phosphoinositide 3-Kinases p110α and p110β Regulate Cell Cycle Entry, Exhibiting Distinct Activation Kinetics in G ₁ Phase. Molecular and Cellular Biology, 2008, 28, 2803-2814.	2.3	50
34	New Functions for PI3K in the Control of Cell Division. Cell Cycle, 2007, 6, 1696-1698.	2.6	26
35	Phosphoinositide 3–kinase γ participates in T cell receptor–induced T cell activation. Journal of Experimental Medicine, 2007, 204, 2977-2987.	8.5	86
36	Phosphoinositide 3–kinase γ participates in T cell receptor–induced T cell activation. Journal of Cell Biology, 2007, 179, i9-i9.	5.2	0

ANA CLARA CARRERA

#	Article	IF	CITATIONS
37	Phosphoinositide 3-kinase controls early and late events in mammalian cell division. EMBO Journal, 2006, 25, 655-661.	7.8	118
38	A PI3K activity-independent function of p85 regulatory subunit in control of mammalian cytokinesis. EMBO Journal, 2006, 25, 4740-4751.	7.8	62
39	PTEN Regulation, a Novel Function for the p85 Subunit of Phosphoinositide 3-Kinase. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, pe49-pe49.	3.9	32
40	Modulation of the PI 3-kinase–Akt signalling pathway by IGF-I and PTEN regulates the differentiation of neural stem/precursor cells. Journal of Cell Science, 2006, 119, 2739-2748.	2.0	128
41	Phosphoinositide 3-Kinase Activation in Late G 1 Is Required for c-Myc Stabilization and S Phase Entry. Molecular and Cellular Biology, 2006, 26, 9116-9125.	2.3	44
42	Class IB-Phosphatidylinositol 3-Kinase (PI3K) Deficiency Ameliorates IA-PI3K-Induced Systemic Lupus but Not T Cell Invasion. Journal of Immunology, 2006, 176, 589-593.	0.8	78
43	PI3Kγ inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus. Nature Medicine, 2005, 11, 933-935.	30.7	306
44	PTEN regulates motility but not directionality during leukocyte chemotaxis. Journal of Cell Science, 2004, 117, 6207-6215.	2.0	70
45	Control of Cyclin G2 mRNA Expression by Forkhead Transcription Factors: Novel Mechanism for Cell Cycle Control by Phosphoinositide 3-Kinase and Forkhead. Molecular and Cellular Biology, 2004, 24, 2181-2189.	2.3	173
46	TOR signaling in mammals. Journal of Cell Science, 2004, 117, 4615-4616.	2.0	54
47	Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis. Journal of Cell Biology, 2004, 164, 759-768.	5.2	206
48	Control region mutations and the 'common deletion' are frequent in the mitochondrial DNA of patients with esophageal squamous cell carcinoma. BMC Cancer, 2004, 4, 30.	2.6	69
49	Differential Requirements for DOCK2 and Phosphoinositide-3-Kinase Î ³ during T and B Lymphocyte Homing. Immunity, 2004, 21, 429-441.	14.3	219
50	Phosphoinositide 3-Kinase Activation Regulates Cell Division Time by Coordinated Control of Cell Mass and Cell Cycle Progression Rate. Journal of Biological Chemistry, 2003, 278, 26466-26473.	3.4	41
51	Phosphatidylinositol 3-Kinase Regulates the CD4/CD8 T Cell Differentiation Ratio. Journal of Immunology, 2003, 170, 4475-4482.	0.8	79
52	A New Role for the p85-Phosphatidylinositol 3-Kinase Regulatory Subunit Linking FRAP to p70 S6 Kinase Activation. Journal of Biological Chemistry, 2002, 277, 1500-1508.	3.4	41
53	Blocking of HIV-1 Infection by Targeting CD4 to Nonraft Membrane Domains. Journal of Experimental Medicine, 2002, 196, 293-301.	8.5	94
54	The p85 Regulatory Subunit Controls Sequential Activation of Phosphoinositide 3-Kinase by Tyr Kinases and Ras. Journal of Biological Chemistry, 2002, 277, 41556-41562.	3.4	110

ANA CLARA CARRERA

#	Article	IF	CITATIONS
55	A Role for Phosphoinositide 3-Kinase in the Control of Cell Division and Survival during Retinal Development. Developmental Biology, 2002, 247, 295-306.	2.0	26
56	Mutation of E2F2 in Mice Causes Enhanced T Lymphocyte Proliferation, Leading to the Development of Autoimmunity. Immunity, 2001, 15, 959-970.	14.3	149
57	Hypoxia Induces the Activation of the Phosphatidylinositol 3-Kinase/Akt Cell Survival Pathway in PC12 Cells. Journal of Biological Chemistry, 2001, 276, 22368-22374.	3.4	217
58	Forkhead transcription factors contribute to execution of the mitotic programme in mammals. Nature, 2001, 413, 744-747.	27.8	262
59	Increased phosphoinositide 3â€kinase activity induces a lymphoproliferative disorder and contributes to tumor generation in vivo. FASEB Journal, 2000, 14, 895-903.	0.5	160
60	Role of the Pi3k Regulatory Subunit in the Control of Actin Organization and Cell Migration. Journal of Cell Biology, 2000, 151, 249-262.	5.2	222
61	The Identification of Phosphatidylinositol 3,5-bisphosphate in T-lymphocytes and Its Regulation by Interleukin-2. Journal of Biological Chemistry, 1999, 274, 18407-18413.	3.4	51
62	Intermediate Affinity Interleukin-2 Receptor Mediates Survival via a Phosphatidylinositol 3-Kinase-dependent Pathway. Journal of Biological Chemistry, 1997, 272, 10220-10226.	3.4	59
63	Lymphoid kinase detection and activation. , 1996, , 1163-1181.		0
64	Lck Unique Domain Influences Lck Specificity and Biological Function. Journal of Biological Chemistry, 1995, 270, 3385-3391.	3.4	29
65	Apoptosis, fas and systemic autoimmunity: the MRL-Ipr/Ipr model. Current Opinion in Immunology, 1994, 6, 913-920.	5.5	148
66	From Apoptosis to Autoimmunity: Insights from the Signaling Pathways Leading to Proliferation or to Programmed Cell Death. Immunological Reviews, 1994, 142, 53-91.	6.0	40
67	The Tyrosine Kinases pp561ck and pp59fyn are Activated in Thymocytes Undergoing Positive Selection. , 1993, , 893-899.		0
68	Thymic selection. Current Opinion in Immunology, 1992, 4, 162-165.	5.5	14
69	Tyrosine kinase triggering in thymocytes undergoing positive selection. European Journal of Immunology, 1992, 22, 2289-2294.	2.9	13
70	Characterization of an active, non-myristylated, cytoplasmic form of the lymphoid protein tyrosine kinase pp56lck. International Immunology, 1991, 3, 673-682.	4.0	11
71	Structural nature of the interaction between T lymphocyte surface molecule CD4 and the intracellular protein tyrosine kinase Ick. European Journal of Immunology, 1990, 20, 453-456.	2.9	17
72	CD2 is involved in regulating cyclic AMP levels in T cells. European Journal of Immunology, 1988, 18, 961-964.	2.9	25

#	Article	IF	CITATIONS
73	Involvement of the CD4 molecule in a post-activation event on T cell proliferation. European Journal of Immunology, 1987, 17, 179-186.	2.9	102