Ana Clara Carrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4310719/publications.pdf

Version: 2024-02-01

73 papers

4,853 citations

39 h-index 91884 69 g-index

73 all docs

73 docs citations

73 times ranked 6745 citing authors

#	Article	IF	CITATIONS
1	PI3K \hat{I}^3 inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus. Nature Medicine, 2005, $11,933-935$.	30.7	306
2	Forkhead transcription factors contribute to execution of the mitotic programme in mammals. Nature, 2001, 413, 744-747.	27.8	262
3	Role of the Pi3k Regulatory Subunit in the Control of Actin Organization and Cell Migration. Journal of Cell Biology, 2000, 151, 249-262.	5.2	222
4	Differential Requirements for DOCK2 and Phosphoinositide-3-Kinase \hat{I}^3 during T and B Lymphocyte Homing. Immunity, 2004, 21, 429-441.	14.3	219
5	Hypoxia Induces the Activation of the Phosphatidylinositol 3-Kinase/Akt Cell Survival Pathway in PC12 Cells. Journal of Biological Chemistry, 2001, 276, 22368-22374.	3.4	217
6	Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis. Journal of Cell Biology, 2004, 164, 759-768.	5.2	206
7	Control of Cyclin G2 mRNA Expression by Forkhead Transcription Factors: Novel Mechanism for Cell Cycle Control by Phosphoinositide 3-Kinase and Forkhead. Molecular and Cellular Biology, 2004, 24, 2181-2189.	2.3	173
8	Increased phosphoinositide 3â€kinase activity induces a lymphoproliferative disorder and contributes to tumor generation in vivo. FASEB Journal, 2000, 14, 895-903.	0.5	160
9	Mutation of E2F2 in Mice Causes Enhanced T Lymphocyte Proliferation, Leading to the Development of Autoimmunity. Immunity, 2001, 15, 959-970.	14.3	149
10	Apoptosis, fas and systemic autoimmunity: the MRL-lpr/lpr model. Current Opinion in Immunology, 1994, 6, 913-920.	5.5	148
11	Nuclear phosphoinositide 3-kinase \hat{l}^2 controls double-strand break DNA repair. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7491-7496.	7.1	148
12	Modulation of the PI 3-kinase–Akt signalling pathway by IGF-I and PTEN regulates the differentiation of neural stem/precursor cells. Journal of Cell Science, 2006, 119, 2739-2748.	2.0	128
13	Grass tablet sublingual immunotherapy downregulates theÂTH2 cytokine response followed by regulatory T-cellÂgeneration. Journal of Allergy and Clinical Immunology, 2014, 133, 130-138.e2.	2.9	125
14	Phosphoinositide 3-kinase controls early and late events in mammalian cell division. EMBO Journal, 2006, 25, 655-661.	7.8	118
15	The p85 Regulatory Subunit Controls Sequential Activation of Phosphoinositide 3-Kinase by Tyr Kinases and Ras. Journal of Biological Chemistry, 2002, 277, 41556-41562.	3.4	110
16	Involvement of the CD4 molecule in a post-activation event on T cell proliferation. European Journal of Immunology, 1987, 17, 179-186.	2.9	102
17	A promoter DNA demethylation landscape of human hematopoietic differentiation. Nucleic Acids Research, 2012, 40, 116-131.	14.5	97
18	Blocking of HIV-1 Infection by Targeting CD4 to Nonraft Membrane Domains. Journal of Experimental Medicine, 2002, 196, 293-301.	8.5	94

#	Article	IF	Citations
19	Phosphoinositide 3–kinase γ participates in T cell receptor–induced T cell activation. Journal of Experimental Medicine, 2007, 204, 2977-2987.	8.5	86
20	The Opposing Roles of PIK3R1/p85î± and PIK3R2/p85î² in Cancer. Trends in Cancer, 2019, 5, 233-244.	7.4	82
21	Phosphatidylinositol 3-Kinase Regulates the CD4/CD8 T Cell Differentiation Ratio. Journal of Immunology, 2003, 170, 4475-4482.	0.8	79
22	Class IB-Phosphatidylinositol 3-Kinase (PI3K) Deficiency Ameliorates IA-PI3K-Induced Systemic Lupus but Not T Cell Invasion. Journal of Immunology, 2006, 176, 589-593.	0.8	78
23	Specific function of phosphoinositide 3-kinase beta in the control of DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7525-7530.	7.1	75
24	SADB phosphorylation of \hat{l}^3 -tubulin regulates centrosome duplication. Nature Cell Biology, 2009, 11, 1081-1092.	10.3	73
25	Nuclear but Not Cytosolic Phosphoinositide 3-Kinase Beta Has an Essential Function in Cell Survival. Molecular and Cellular Biology, 2011, 31, 2122-2133.	2.3	72
26	PTEN regulates motility but not directionality during leukocyte chemotaxis. Journal of Cell Science, 2004, 117, 6207-6215.	2.0	70
27	Control region mutations and the 'common deletion' are frequent in the mitochondrial DNA of patients with esophageal squamous cell carcinoma. BMC Cancer, 2004, 4, 30.	2.6	69
28	Enhanced Phosphoinositide 3-Kinase $\hat{\Gamma}$ Activity Is a Frequent Event in Systemic Lupus Erythematosus That Confers Resistance to Activation-Induced T Cell Death. Journal of Immunology, 2011, 187, 2376-2385.	0.8	69
29	A PI3K activity-independent function of p85 regulatory subunit in control of mammalian cytokinesis. EMBO Journal, 2006, 25, 4740-4751.	7.8	62
30	Intermediate Affinity Interleukin-2 Receptor Mediates Survival via a Phosphatidylinositol 3-Kinase-dependent Pathway. Journal of Biological Chemistry, 1997, 272, 10220-10226.	3.4	59
31	p85β phosphoinositide 3-kinase subunit regulates tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11318-11323.	7.1	56
32	TOR signaling in mammals. Journal of Cell Science, 2004, 117, 4615-4616.	2.0	54
33	The Identification of Phosphatidylinositol 3,5-bisphosphate in T-lymphocytes and Its Regulation by Interleukin-2. Journal of Biological Chemistry, 1999, 274, 18407-18413.	3.4	51
34	Phosphoinositide 3-Kinases p110 \hat{l} ± and p110 \hat{l} 2 Regulate Cell Cycle Entry, Exhibiting Distinct Activation Kinetics in G ₁ Phase. Molecular and Cellular Biology, 2008, 28, 2803-2814.	2.3	50
35	Persistent regulatory Tâ€cell response 2 years after 3 years of grass tablet <scp>SLIT</scp> : Links to reduced eosinophil counts, <scp>slgE</scp> levels, and clinical benefit. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 349-360.	5.7	46
36	Phosphoinositide 3-Kinase Activation in Late G 1 Is Required for c-Myc Stabilization and S Phase Entry. Molecular and Cellular Biology, 2006, 26, 9116-9125.	2.3	44

#	Article	IF	CITATIONS
37	A New Role for the p85-Phosphatidylinositol 3-Kinase Regulatory Subunit Linking FRAP to p70 S6 Kinase Activation. Journal of Biological Chemistry, 2002, 277, 1500-1508.	3.4	41
38	Phosphoinositide 3-Kinase Activation Regulates Cell Division Time by Coordinated Control of Cell Mass and Cell Cycle Progression Rate. Journal of Biological Chemistry, 2003, 278, 26466-26473.	3.4	41
39	Inhibition of PI3Kl̂ Reduces Kidney Infiltration by Macrophages and Ameliorates Systemic Lupus in the Mouse. Journal of Immunology, 2014, 193, 544-554.	0.8	41
40	From Apoptosis to Autoimmunity: Insights from the Signaling Pathways Leading to Proliferation or to Programmed Cell Death. Immunological Reviews, 1994, 142, 53-91.	6.0	40
41	Phosphatidylinositol 3-Kinase \hat{I}^3 Inhibition Ameliorates Inflammation and Tumor Growth in a Model of Colitis-Associated Cancer. Gastroenterology, 2010, 138, 1374-1383.	1.3	36
42	Role of NRF2 in Lung Cancer. Cells, 2021, 10, 1879.	4.1	35
43	p85β phosphoinositide 3-kinase regulates CD28 coreceptor function. Blood, 2009, 113, 3198-3208.	1.4	34
44	PTEN Regulation, a Novel Function for the p85 Subunit of Phosphoinositide 3-Kinase. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, pe49-pe49.	3.9	32
45	Lck Unique Domain Influences Lck Specificity and Biological Function. Journal of Biological Chemistry, 1995, 270, 3385-3391.	3.4	29
46	Abi1/Hssh3bp1 pY213 links Abl kinase signaling to p85 regulatory subunit of Plâ€3 kinase in regulation of macropinocytosis in LNCaP cells. FEBS Letters, 2010, 584, 3279-3286.	2.8	29
47	PI 3 K \hat{I}^3 activation by CXCL12 regulates tumor cell adhesion and invasion. Biochemical and Biophysical Research Communications, 2009, 388, 199-204.	2.1	28
48	A Role for Phosphoinositide 3-Kinase in the Control of Cell Division and Survival during Retinal Development. Developmental Biology, 2002, 247, 295-306.	2.0	26
49	New Functions for PI3K in the Control of Cell Division. Cell Cycle, 2007, 6, 1696-1698.	2.6	26
50	CD2 is involved in regulating cyclic AMP levels in T cells. European Journal of Immunology, 1988, 18, 961-964.	2.9	25
51	Phosphoinositide 3-kinase p85beta regulates invadopodium formation. Biology Open, 2014, 3, 924-936.	1.2	20
52	Phosphoinositide 3-kinase \hat{l}^2 regulates chromosome segregation in mitosis. Molecular Biology of the Cell, 2012, 23, 4526-4542.	2.1	19
53	The cell biology behind the oncogenic PIP3 lipids. Journal of Cell Science, 2019, 132, .	2.0	18
54	Structural nature of the interaction between T lymphocyte surface molecule CD4 and the intracellular protein tyrosine kinase Ick. European Journal of Immunology, 1990, 20, 453-456.	2.9	17

#	Article	IF	Citations
55	Suppressor of cytokine signaling 1 blocks mitosis in human melanoma cells. Cellular and Molecular Life Sciences, 2013, 70, 545-558.	5.4	17
56	PI3K p $110\hat{1}^3$ Deletion Attenuates Murine Atherosclerosis by Reducing Macrophage Proliferation but Not Polarization or Apoptosis in Lesions. PLoS ONE, 2013, 8, e72674.	2.5	17
57	Targeted depletion of <i>PIK3R2</i> induces regression of lung squamous cell carcinoma. Oncotarget, 2016, 7, 85063-85078.	1.8	16
58	Cell Activation-Induced Phosphoinositide 3-Kinase Alpha/Beta Dimerization Regulates PTEN Activity. Molecular and Cellular Biology, 2014, 34, 3359-3373.	2.3	15
59	Thymic selection. Current Opinion in Immunology, 1992, 4, 162-165.	5.5	14
60	Tyrosine kinase triggering in thymocytes undergoing positive selection. European Journal of Immunology, 1992, 22, 2289-2294.	2.9	13
61	Phosphoinositide 3-Kinase Beta Protects Nuclear Envelope Integrity by Controlling RCC1 Localization and Ran Activity. Molecular and Cellular Biology, 2015, 35, 249-263.	2.3	12
62	Characterization of an active, non-myristylated, cytoplasmic form of the lymphoid protein tyrosine kinase pp56lck. International Immunology, 1991, 3, 673-682.	4.0	11
63	E-cadherin downregulation sensitizes PTEN-mutant tumors to PI3K \hat{I}^2 silencing. Oncotarget, 2016, 7, 84054-84071.	1.8	10
64	SADB kinases license centrosome replication. Cell Cycle, 2009, 8, 4005-4006.	2.6	9
65	CXCL12-Mediated Murine Neural Progenitor Cell Movement Requires PI3K \hat{l}^2 Activation. Molecular Neurobiology, 2013, 48, 217-231.	4.0	8
66	Phosphoinositide 3-kinase beta controls replication factor C assembly and function. Nucleic Acids Research, 2013, 41, 855-868.	14.5	6
67	Fluctuations in AKT and PTEN Activity Are Linked by the E3 Ubiquitin Ligase cCBL. Cells, 2021, 10, 2803.	4.1	4
68	$\mbox{\sc kinase}$ activity and accelerates tumor progression $\mbox{\sc /b}$. Cell Cycle, 2012, 11, 3523-3524.	2.6	2
69	PI3K p $110\hat{l}$ Is Expressed by gp $38\hat{a}$ CD31+ and gp 38 +CD31+ Spleen Stromal Cells and Regulates Their CCL19, CCL21, and LT \hat{l} 2R mRNA Levels. PLoS ONE, 2013, 8, e72960.	2.5	2
70	Functions of Nuclear Polyphosphoinositides. Handbook of Experimental Pharmacology, 2019, 259, 163-181.	1.8	1
71	Phosphoinositide 3–kinase γ participates in T cell receptor–induced T cell activation. Journal of Cell Biology, 2007, 179, i9-i9.	5.2	О
72	The Tyrosine Kinases pp561ck and pp59fyn are Activated in Thymocytes Undergoing Positive Selection. , 1993, , 893-899.		0

ARTICLE IF CITATIONS

73 Lymphoid kinase detection and activation., 1996, , 1163-1181. 0