Artem A Bakulin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4310072/publications.pdf

Version: 2024-02-01

76326 54911 7,180 110 40 84 citations h-index g-index papers 113 113 113 8870 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Oxygen-induced degradation in AgBiS ₂ nanocrystal solar cells. Nanoscale, 2022, 14, 3020-3030.	5.6	6
2	Reconciling models of interfacial state kinetics and device performance in organic solar cells: impact of the energy offsets on the power conversion efficiency. Energy and Environmental Science, 2022, 15, 1256-1270.	30.8	21
3	BN-Substitution in Dithienylpyrenes Prevents Excimer Formation in Solution and in the Solid State. Journal of Physical Chemistry C, 2022, 126, 4563-4576.	3.1	5
4	Infrared Organic Photodetectors Employing Ultralow Bandgap Polymer and Nonâ€Fullerene Acceptors for Biometric Monitoring. Small, 2022, 18, e2200580.	10.0	39
5	Electronic defects in metal oxide photocatalysts. Nature Reviews Materials, 2022, 7, 503-521.	48.7	129
6	Selenium-Substituted Non-Fullerene Acceptors: A Route to Superior Operational Stability for Organic Bulk Heterojunction Solar Cells. ACS Nano, 2021, 15, 7700-7712.	14.6	36
7	Correlating Charge-Transfer State Lifetimes with Material Energetics in Polymer:Non-Fullerene Acceptor Organic Solar Cells. Journal of the American Chemical Society, 2021, 143, 7599-7603.	13.7	59
8	Materials, photophysics and device engineering of perovskite light-emitting diodes. Reports on Progress in Physics, 2021, 84, 046401.	20.1	52
9	Ultrafast Exciton Dynamics in Poly(3-hexylthiophene) Probed with Time Resolved X-ray Absorption Spectroscopy at the Carbon K-edge., 2021,,.		1
10	Multipulse Terahertz Spectroscopy Unveils Hot Polaron Photoconductivity Dynamics in Metal-Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 8732-8739.	4.6	8
11	Defects Healing in Two-Step Deposited Perovskite Solar Cells via Formamidinium Iodide Compensation. ACS Applied Energy Materials, 2020, 3, 3318-3327.	5.1	32
12	Energy Transfer to a Stable Donor Suppresses Degradation in Organic Solar Cells. Advanced Functional Materials, 2020, 30, 1907432.	14.9	32
13	Nonfullerene-Based Organic Photodetectors for Ultrahigh Sensitivity Visible Light Detection. ACS Applied Materials & Samp; Interfaces, 2020, 12, 48836-48844.	8.0	40
14	Organic Solar Cells: Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells (Adv. Energy Mater. 38/2020). Advanced Energy Materials, 2020, 10, 2070158.	19.5	2
15	Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2001149.	19.5	40
16	Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright. Nature, 2020, 587, 594-599.	27.8	135
17	Kinetic modelling of intraband carrier relaxation in bulk and nanocrystalline lead-halide perovskites. Physical Chemistry Chemical Physics, 2020, 22, 17605-17611.	2.8	5
18	Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells. Nature Communications, 2020, 11, 4617.	12.8	60

#	Article	IF	CITATIONS
19	Field Effect versus Driving Force: Charge Generation in Smallâ€Molecule Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2002124.	19.5	19
20	Hot Carrier Dynamics in Perovskite Nanocrystal Solids: Role of the Cold Carriers, Nanoconfinement, and the Surface. Nano Letters, 2020, 20, 2271-2278.	9.1	40
21	All-conjugated donor–acceptor block copolymers featuring a pentafulvenyl-polyisocyanide-acceptor. Polymer Chemistry, 2020, 11, 1852-1859.	3.9	5
22	Influence of Polymer Aggregation and Liquid Immiscibility on Morphology Tuning by Varying Composition in PffBT4Tâ€2DT/Nonfullerene Organic Solar Cells. Advanced Energy Materials, 2020, 10, 1903248.	19.5	23
23	Preferred orientations of organic cations at lead-halide perovskite interfaces revealed using vibrational sum-frequency spectroscopy. Materials Horizons, 2020, 7, 1348-1357.	12.2	15
24	Influence of Polymer Aggregation and Liquid Immiscibility on Morphology Tuning by Varying Composition in PffBT4T-2DT/Non-Fullerene Organic Solar Cells. Advanced Energy Materials, 2020, 10, .	19.5	0
25	Impact of Marginal Exciton–Charge-Transfer State Offset on Charge Generation and Recombination in Polymer:Fullerene Solar Cells. ACS Energy Letters, 2019, 4, 2096-2103.	17.4	24
26	Charge Separation, Band-Bending, and Recombination in WO ₃ Photoanodes. Journal of Physical Chemistry Letters, 2019, 10, 5395-5401.	4.6	44
27	Sequentially Deposited versus Conventional Nonfullerene Organic Solar Cells: Interfacial Trap States, Vertical Stratification, and Exciton Dissociation. Advanced Energy Materials, 2019, 9, 1902145.	19.5	36
28	Impact of Oxygen Vacancy Occupancy on Charge Carrier Dynamics in BiVO ₄ Photoanodes. Journal of the American Chemical Society, 2019, 141, 18791-18798.	13.7	147
29	In situ observation of picosecond polaron self-localisation in \hat{l}_{\pm} -Fe2O3 photoelectrochemical cells. Nature Communications, 2019, 10, 3962.	12.8	93
30	Efficient and Tunable Electroluminescence from In Situ Synthesized Perovskite Quantum Dots. Small, 2019, 15, e1804947.	10.0	23
31	Control of Donor–Acceptor Photophysics through Structural Modification of a "Twisting― Push–Pull Molecule. Chemistry of Materials, 2019, 31, 6860-6869.	6.7	15
32	The binding energy and dynamics of charge-transfer states in organic photovoltaics with low driving force for charge separation. Journal of Chemical Physics, 2019, 150, 104704.	3.0	32
33	Oxygen-Induced Doping as a Degradation Mechanism in Highly Efficient Organic Solar Cells. ACS Applied Energy Materials, 2019, 2, 1943-1950.	5.1	29
34	Organic Solar Cells: Sequentially Deposited versus Conventional Nonfullerene Organic Solar Cells: Interfacial Trap States, Vertical Stratification, and Exciton Dissociation (Adv. Energy Mater. 47/2019). Advanced Energy Materials, 2019, 9, 1970185.	19.5	1
35	Probing charge transfer states at organic and hybrid internal interfaces by photothermal deflection spectroscopy. Journal of Physics Condensed Matter, 2019, 31, 124001.	1.8	9
36	Block Junction-Functionalized All-Conjugated Donor–Acceptor Block Copolymers. ACS Applied Materials & Copolymers. ACS Applied Materials	8.0	16

3

#	Article	lF	CITATIONS
37	Hot-carrier cooling in lead-bromide perovskite materials. , 2019, , .		1
38	Triptycenylâ€phenazinoâ€thiadiazole as acceptor in organic bulk-heterojunction solar cells. Organic Electronics, 2018, 57, 285-291.	2.6	16
39	Control of Geminate Recombination by the Material Composition and Processing Conditions in Novel Polymer: Nonfullerene Acceptor Photovoltaic Devices. Journal of Physical Chemistry A, 2018, 122, 1253-1260.	2.5	10
40	Field-Assisted Exciton Dissociation in Highly Efficient PffBT4T-2OD:Fullerene Organic Solar Cells. Chemistry of Materials, 2018, 30, 2660-2667.	6.7	49
41	The effect of ionic composition on acoustic phonon speeds in hybrid perovskites from Brillouin spectroscopy and density functional theory. Journal of Materials Chemistry C, 2018, 6, 3861-3868.	5.5	23
42	Fineâ€Tuning the Energy Levels of a Nonfullerene Smallâ€Molecule Acceptor to Achieve a High Shortâ€Circuit Current and a Power Conversion Efficiency over 12% in Organic Solar Cells. Advanced Materials, 2018, 30, 1704904.	21.0	214
43	Rotational Cation Dynamics in Metal Halide Perovskites: Effect on Phonons and Material Properties. Journal of Physical Chemistry Letters, 2018, 9, 5987-5997.	4.6	68
44	Efficient non-fullerene organic solar cells employing sequentially deposited donor–acceptor layers. Journal of Materials Chemistry A, 2018, 6, 18225-18233.	10.3	49
45	Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nature Materials, 2018, 17, 703-709.	27.5	701
46	Ultrafast Carrier Cooling in Led Halide Perovskite Solar Cells., 2018,,.		0
47	Ultrafast Intraband Spectroscopy of Hot-Carrier Cooling in Lead-Halide Perovskites. ACS Energy Letters, 2018, 3, 2199-2205.	17.4	119
48	Organic Cation Rotation and Immobilization in Pure and Mixed Methylammonium Lead-Halide Perovskites. Journal of the American Chemical Society, 2017, 139, 4068-4074.	13.7	114
49	On the energetics of bound charge-transfer states in organic photovoltaics. Journal of Materials Chemistry A, 2017, 5, 11949-11959.	10.3	23
50	$\langle i \rangle N \langle i \rangle$ -Heteroacenes as a New Class of Non-Fullerene Electron Acceptors for Organic Bulk-Heterojunction Photovoltaic Devices. Solar Rrl, 2017, 1, 1700053.	5.8	30
51	Molecular doping of single-walled carbon nanotube transistors: optoelectronic study. , 2016, , .		1
52	What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends. Journal of the American Chemical Society, 2016, 138, 11672-11679.	13.7	179
53	Improving Charge Separation across a Hybrid Oxide/Polymer Interface by Cs Doping of the Metal Oxide. Advanced Materials Interfaces, 2016, 3, 1500616.	3.7	27
54	Morphology, Temperature, and Field Dependence of Charge Separation in High-Efficiency Solar Cells Based on Alternating Polyquinoxaline Copolymer. Journal of Physical Chemistry C, 2016, 120, 4219-4226.	3.1	22

#	Article	IF	Citations
55	Simultaneous enhancement in open circuit voltage and short circuit current of hybrid organic–inorganic photovoltaics by inorganic interfacial modification. Journal of Materials Chemistry C, 2016, 4, 1111-1116.	5.5	11
56	Ultrafast Spectroscopy with Photocurrent Detection: Watching Excitonic Optoelectronic Systems at Work. Journal of Physical Chemistry Letters, 2016, 7, 250-258.	4.6	81
57	Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy. Nature Chemistry, 2016, 8, 16-23.	13.6	308
58	Reduced Carrier Recombination in PbS - CulnS2 Quantum Dot Solar Cells. Scientific Reports, 2015, 5, 10626.	3.3	44
59	Dynamics of Intraband and Interband Auger Processes in Colloidal Core–Shell Quantum Dots. ACS Nano, 2015, 9, 10366-10376.	14.6	52
60	Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%. Nano Letters, 2015, 15, 7987-7993.	9.1	130
61	Mode-selective vibrational modulation of charge transport in organic electronic devices. Nature Communications, 2015, 6, 7880.	12.8	72
62	Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 3663-3669.	4.6	322
63	Water Infiltration in Methylammonium Lead Iodide Perovskite: Fast and Inconspicuous. Chemistry of Materials, 2015, 27, 7835-7841.	6.7	194
64	Ultrafast infrared spectroscopy reveals intragap states in methylammonium lead iodide perovskite materials. Proceedings of SPIE, 2014, , .	0.8	3
65	Unequal Partnership: Asymmetric Roles of Polymeric Donor and Fullerene Acceptor in Generating Free Charge. Journal of the American Chemical Society, 2014, 136, 2876-2884.	13.7	235
66	Control of charge generation and recombination in ternary polymer/polymer:fullerene photovoltaic blends using amorphous and semi-crystalline copolymers as donors. Physical Chemistry Chemical Physics, 2014, 16, 20329-20337.	2.8	30
67	Improved Performance of ZnO/Polymer Hybrid Photovoltaic Devices by Combining Metal Oxide Doping and Interfacial Modification. Journal of Physical Chemistry C, 2014, 118, 18945-18950.	3.1	36
68	Ultrafast Optical Control of Charge Dynamics in Organic and Hybrid Electronic Nanodevices. , 2014, , .		0
69	Dynamics of Water Confined in Reversed Micelles: Multidimensional Vibrational Spectroscopy Study. Journal of Physical Chemistry B, 2013, 117, 15545-15558.	2.6	82
70	Control of light absorption in organic solar cells using semi-transparent metal electrodes. Proceedings of SPIE, 2013, , .	0.8	0
71	Charge Trapping Dynamics in PbS Colloidal Quantum Dot Photovoltaic Devices. ACS Nano, 2013, 7, 8771-8779.	14.6	78
72	Charge-Transfer State Dynamics Following Hole and Electron Transfer in Organic Photovoltaic Devices. Journal of Physical Chemistry Letters, 2013, 4, 209-215.	4.6	120

#	Article	IF	Citations
73	Donor–acceptor interface modification by zwitterionic conjugated polyelectrolytes in polymer photovoltaics. Energy and Environmental Science, 2013, 6, 1589.	30.8	46
74	Suppressing Recombination in Polymer Photovoltaic Devices via Energy‣evel Cascades. Advanced Materials, 2013, 25, 4131-4138.	21.0	57
75	Direct Observation of Photoinduced Bound Charge-Pair States at an Organic-Inorganic Semiconductor Interface. Physical Review Letters, 2012, 108, 246605.	7.8	66
76	The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors. Science, 2012, 335, 1340-1344.	12.6	1,022
77	On the Energetic Dependence of Charge Separation in Low-Band-Gap Polymer/Fullerene Blends. Journal of the American Chemical Society, 2012, 134, 18189-18192.	13.7	180
78	Reduced coupling of water molecules near the surface of reverse micelles. Physical Chemistry Chemical Physics, 2011, 13, 19355.	2.8	9
79	Hydrophobic Molecules Slow Down the Hydrogen-Bond Dynamics of Water. Journal of Physical Chemistry A, 2011, 115, 1821-1829.	2.5	127
80	Ultrafast Holeâ€Transfer Dynamics in Polymer/PCBM Bulk Heterojunctions. Advanced Functional Materials, 2010, 20, 1653-1660.	14.9	117
81	Femtosecond midinfrared study of aggregation behavior in aqueous solutions of amphiphilic molecules. Journal of Chemical Physics, 2010, 133, 164514.	3.0	32
82	30-fs Hole-Transfer Dynamics in Polymer/PCBM Bulk Heterojunction., 2010,,.		0
83	Water Dynamics near Hydrophobes: an Ultrafast Infrared Spectroscopy Study. , 2010, , .		0
84	Ultrafast polarisation spectroscopy of photoinduced charges in a conjugated polymer. Quantum Electronics, 2009, 39, 643-648.	1.0	3
85	Charge-transfer complexes of conjugated polymers as intermediates in charge photogeneration for organic photovoltaics. Chemical Physics Letters, 2009, 482, 99-104.	2.6	38
86	Photogeneration and Ultrafast Dynamics of Excitons and Charges in P3HT/PCBM Blends. Journal of Physical Chemistry C, 2009, 113, 14500-14506.	3.1	304
87	Hydrophobic Solvation: A 2D IR Spectroscopic Inquest. Accounts of Chemical Research, 2009, 42, 1229-1238.	15.6	121
88	Efficient two-step photogeneration of long-lived charges in ground-state charge-transfer complexes of conjugated polymer doped with fullerene. Physical Chemistry Chemical Physics, 2009, 11, 7324.	2.8	30
89	Ultrafast Charge Photogeneration Dynamics in Ground-State Charge-Transfer Complexes Based on Conjugated Polymers. Journal of Physical Chemistry B, 2008, 112, 13730-13737.	2.6	60
90	Dramatic enhancement of photo-oxidation stability of a conjugated polymer in blends with organic acceptor. Applied Physics Letters, 2008, 92, .	3.3	29

#	Article	IF	CITATIONS
91	Ultrafast Energy Transfer in Waterâ^'AOT Reverse Micelles. Journal of Physical Chemistry B, 2007, 111, 14193-14207.	2.6	114
92	Charge Transfer Complexes of a Conjugated Polymer. Doklady Chemistry, 2004, 398, 204-206.	0.9	15
93	Weak charge-transfer complexes based on conjugated polymers for plastic solar cells. Synthetic Metals, 2004, 147, 221-225.	3.9	49
94	Properties of MEH-PPV films prepared by slow solvent evaporation. Synthetic Metals, 2004, 147, 287-291.	3.9	40
95	Charge Dynamics in NFA Material Systems Based on One, Two and Three Organic Semiconductors. , 0, , .		0
96	Ultra-low band gap polymers for organic electronic applications. , 0, , .		0
97	Organic Cation in Hybrid Perovskite Materials and Interfaces. , 0, , .		O
98	Ultrafast Electron Localisation and Delocalisation in Photoelectrochemical Cells. Towards Control of Excited-State Transport. , 0, , .		0
99	Ultrafast Intraband Spectroscopy of Hot-Carrier Cooling in Lead-Halide Perovskites. , 0, , .		0
100	Carrier-Carrier vs Carrier-Phonon Interactions in Lead-halide Perovskite Materials: Role of Carrier Density, Nanoconfinement, and Surface Ligands. , 0, , .		0
101	Impact of Marginal Exciton – Charge-transfer State Offset on Charge Generation and Recombination in Polymer: Fullerene Solar Cells. , 0, , .		0
102	Organic Cation in Hybrid Perovskite Materials and Interfaces. , 0, , .		0
103	Ultrafast Electron Localisation and Delocalisation in Photoelectrochemical Cells. Towards Control of Excited-State Transport. , 0, , .		0
104	Ultrafast Intraband Spectroscopy of Hot-Carrier Cooling in Lead-Halide Perovskites. , 0, , .		0
105	Impact of Marginal Exciton – Charge-transfer State Offset on Charge Generation and Recombination in Polymer: Fullerene Solar Cells. , 0, , .		0
106	Carrier-Carrier vs Carrier-Phonon Interactions in Lead-halide Perovskite Materials: Role of Carrier Density, Nanoconfinement, and Surface Ligands. , 0, , .		0
107	'Just Vibing': Coupled Organic and Inorganic Sublattices in Organohalide Perovskite Solar Cells. , 0, , .		0
108	Hot Carrier Cooling Dynamics in Lead Halide Perovskite Nanomaterials. , 0, , .		0

#	Article	IF	CITATIONS
109	How Fast Can Bound Exciton Formation Be? Sub-10-fs!. , 0, , .		0
110	Singlet fission dynamics in high quality rubrene single crystals. , 0, , .		0