Nese Sreenivasulu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4309983/publications.pdf

Version: 2024-02-01

45317 34105 8,988 141 52 90 citations h-index g-index papers 147 147 147 9913 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The nutritional profile and human health benefit of pigmented rice and the impact of post-harvest processes and product development on the nutritional components: A review. Critical Reviews in Food Science and Nutrition, 2023, 63, 3867-3894.	10.3	10
2	Systems seed biology to understand and manipulate rice grain quality and nutrition. Critical Reviews in Biotechnology, 2023, 43, 716-733.	9.0	1
3	Enhancing health benefits of milled rice: current status and future perspectives. Critical Reviews in Food Science and Nutrition, 2022, 62, 8099-8119.	10.3	9
4	Lysine biofortification of crops to promote sustained human health in the 21st century. Journal of Experimental Botany, 2022, 73, 1258-1267.	4.8	17
5	Vitamin K in human health and metabolism: A nutri-genomics review. Trends in Food Science and Technology, 2022, 119, 412-427.	15.1	8
6	Diversity: current and prospective secondary metabolites for nutrition and medicine. Current Opinion in Biotechnology, 2022, 74, 164-170.	6.6	27
7	Laser microdissection transcriptome data derived gene regulatory networks of developing rice endosperm revealed tissue- and stage-specific regulators modulating starch metabolism. Plant Molecular Biology, 2022, 108, 443-467.	3.9	2
8	<i>INTERMEDIUM-C</i> mediates the shade-induced bud growth arrest in barley. Journal of Experimental Botany, 2022, 73, 1963-1977.	4.8	0
9	Post-genomics revolution in the design of premium quality rice in a high-yielding background to meet consumer demands in the 21st century. Plant Communications, 2022, 3, 100271.	7.7	19
10	Metabolomics based inferences to unravel phenolic compound diversity in cereals and its implications for human gut health. Trends in Food Science and Technology, 2022, 127, 14-25.	15.1	26
11	Efficient fortification of folic acid in rice through ultrasonic treatment and absorption. Food Chemistry, 2021, 335, 127629.	8.2	19
12	Impact of ultrasonic treatment on rice starch and grain functional properties: A review. Ultrasonics Sonochemistry, 2021, 71, 105383.	8.2	73
13	Genomeâ€wide association coupled gene to gene interaction studies unveil novel epistatic targets among major effect loci impacting rice grain chalkiness. Plant Biotechnology Journal, 2021, 19, 910-925.	8.3	26
14	OsTPR boosts the superior grains through increase in upper secondary rachis branches without incurring a grain quality penalty. Plant Biotechnology Journal, 2021, 19, 1396-1411.	8.3	9
15	The genetics underlying metabolic signatures in a brown rice diversity panel and their vital role in human nutrition. Plant Journal, 2021, 106, 507-525.	5.7	22
16	Meeting human dietary vitamin requirements in the staple rice via strategies of biofortification and post-harvest fortification. Trends in Food Science and Technology, 2021, 109, 65-82.	15.1	32
17	What happens at night? Physiological mechanisms related to maintaining grain yield under high night temperature in rice. Plant, Cell and Environment, 2021, 44, 2245-2261.	5.7	22
18	Deploying viscosity and starch polymer properties to predict cooking and eating quality models: A novel breeding tool to predict texture. Carbohydrate Polymers, 2021, 260, 117766.	10.2	15

#	Article	IF	Citations
19	Idealizing inflorescence architecture to enhance rice yield potential for feeding nine billion people in 2050. Molecular Plant, 2021, 14, 861-863.	8.3	6
20	Dataset on viscosity and starch polymer properties to predict texture through modeling. Data in Brief, 2021, 36, 107038.	1.0	2
21	Profiling of 2-Acetyl-1-Pyrroline and Other Volatile Compounds in Raw and Cooked Rice of Traditional and Improved Varieties of India. Foods, 2021, 10, 1917.	4.3	14
22	Improved Eating and Cooking Quality of indica Rice Cultivar YK17 via Adenine Base Editing of Wx Allele of Granule-Bound Starch Synthase I (GBSS I). Rice Science, 2021, 28, 427-430.	3.9	5
23	Application of classification models in screening superior rice grain quality in male sterile and pollen parents. Journal of Food Composition and Analysis, 2021, 104, 104137.	3.9	4
24	Enhancing the functional properties of rice starch through biopolymer blending for industrial applications: A review. International Journal of Biological Macromolecules, 2021, 192, 100-117.	7.5	28
25	Breeding Temperate Japonica Rice Varieties Adaptable to Tropical Regions: Progress and Prospects. Agronomy, 2021, 11, 2253.	3.0	1
26	Food Processing Technologies to Develop Functional Foods With Enriched Bioactive Phenolic Compounds in Cereals. Frontiers in Plant Science, 2021, 12, 771276.	3.6	23
27	Low glycemic index rice—a desired trait in starchy staples. Trends in Food Science and Technology, 2020, 106, 132-149.	15.1	57
28	Diversity of content and composition of cell wall-derived dietary fibre in polished rice. Journal of Cereal Science, 2020, 96, 103122.	3.7	12
29	Waxy Editing: Old Meets New. Trends in Plant Science, 2020, 25, 963-966.	8.8	37
30	Dataset on the folic acid uptake and the effect of sonication-based fortification on the color, pasting and textural properties of brown and milled rice. Data in Brief, 2020, 32, 106198.	1.0	3
31	Obtaining High-Quality Transcriptome Data from Cereal Seeds by a Modified Method for Gene Expression Profiling. Journal of Visualized Experiments, 2020, , .	0.3	0
32	Sonication increases the porosity of uncooked rice kernels affording softer textural properties, loss of intrinsic nutrients and increased uptake capacity during fortification. Ultrasonics Sonochemistry, 2020, 68, 105234.	8.2	12
33	The Genetic Basis and Nutritional Benefits of Pigmented Rice Grain. Frontiers in Genetics, 2020, 11, 229.	2.3	108
34	Rice yield formation under high day and night temperaturesâ€"A prerequisite to ensure future food security. Plant, Cell and Environment, 2020, 43, 1595-1608.	5.7	81
35	Balancing the doubleâ€edged sword effect of increased resistant starch content and its impact on rice texture: its genetics and molecular physiological mechanisms. Plant Biotechnology Journal, 2020, 18, 1763-1777.	8.3	36
36	High uptake and inward diffusion of iron fortificant in ultrasonicated milled rice. LWT - Food Science and Technology, 2020, 128, 109459.	5.2	8

#	Article	IF	CITATIONS
37	Brown Rice, a Diet Rich in Health Promoting Properties. Journal of Nutritional Science and Vitaminology, 2019, 65, S26-S28.	0.6	25
38	Improving Rice Dietary Fibre Content and Composition for Human Health. Journal of Nutritional Science and Vitaminology, 2019, 65, S48-S50.	0.6	9
39	Dissecting the genome-wide genetic variants of milling and appearance quality traits in rice. Journal of Experimental Botany, 2019, 70, 5115-5130.	4.8	30
40	Role and Regulation of Osmolytes and ABA Interaction in Salt and Drought Stress Tolerance. , 2019, , 417-436.		19
41	Osmolyte Diversity, Distribution, and Their Biosynthetic Pathways., 2019,, 449-458.		10
42	Long glucan chains reduce in vitro starch digestibility of freshly cooked and retrograded milled rice. Journal of Cereal Science, 2019, 86, 108-116.	3.7	22
43	Integrating a genomeâ€wide association study with a largeâ€scale transcriptome analysis to predict genetic regions influencing the glycaemic index and texture in rice. Plant Biotechnology Journal, 2019, 17, 1261-1275.	8.3	56
44	Improving Head Rice Yield and Milling Quality: State-of-the-Art and Future Prospects. Methods in Molecular Biology, 2019, 1892, 1-18.	0.9	13
45	Rice Grain Quality Benchmarking Through Profiling of Volatiles and Metabolites in Grains Using Gas Chromatography Mass Spectrometry. Methods in Molecular Biology, 2019, 1892, 187-199.	0.9	4
46	Quantifying Grain Digestibility of Starch Fractions in Milled Rice. Methods in Molecular Biology, 2019, 1892, 241-252.	0.9	3
47	Determination of Macronutrient and Micronutrient Content in Rice Grains Using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Methods in Molecular Biology, 2019, 1892, 253-264.	0.9	4
48	Determination of Cadmium Concentration in Milled and Brown Rice Grains Using Graphite Furnace Atomic Absorption Spectrometry. Methods in Molecular Biology, 2019, 1892, 265-275.	0.9	1
49	Analysis of Developing Rice Grain Transcriptome Using the Agilent Microarray Platform. Methods in Molecular Biology, 2019, 1892, 277-300.	0.9	4
50	Improving Rice Grain Quality: State-of-the-Art and Future Prospects. Methods in Molecular Biology, 2019, 1892, 19-55.	0.9	35
51	Novel Imaging Techniques to Analyze Panicle Architecture. Methods in Molecular Biology, 2019, 1892, 75-88.	0.9	2
52	Measuring Head Rice Recovery in Rice. Methods in Molecular Biology, 2019, 1892, 89-98.	0.9	2
53	Measurement of Rice Grain Dimensions and Chalkiness, and Rice Grain Elongation Using Image Analysis. Methods in Molecular Biology, 2019, 1892, 99-108.	0.9	11
54	Method Development of Near-Infrared Spectroscopy Approaches for Nondestructive and Rapid Estimation of Total Protein in Brown Rice Flour. Methods in Molecular Biology, 2019, 1892, 109-135.	0.9	4

#	Article	IF	CITATIONS
55	Multi-Dimensional Cooking Quality Classification Using Routine Quality Evaluation Methods. Methods in Molecular Biology, 2019, 1892, 137-150.	0.9	2
56	Characterization of Mechanical Texture Attributes of Cooked Milled Rice by Texture Profile Analyses and Unraveling Viscoelasticity Properties Through Rheometry. Methods in Molecular Biology, 2019, 1892, 151-167.	0.9	7
57	Laser Microdissection-Based Tissue-Specific Transcriptome Analysis Reveals a Novel Regulatory Network of Genes Involved in Heat-Induced Grain Chalk in Rice Endosperm. Plant and Cell Physiology, 2019, 60, 626-642.	3.1	40
58	Cross-Protection by Oxidative Stress: Improving Tolerance to Abiotic Stresses Including Salinity. , $2018, 283-305$.		8
59	Deciphering the Genetic Architecture of Cooked Rice Texture. Frontiers in Plant Science, 2018, 9, 1405.	3.6	34
60	Multivariate-based classification of predicting cooking quality ideotypes in rice (Oryza sativa L.) indica germplasm. Rice, $2018,11,56.$	4.0	27
61	Abscisic acid influences tillering by modulation of strigolactones in barley. Journal of Experimental Botany, 2018, 69, 3883-3898.	4.8	51
62	Systems biology of seeds: deciphering the molecular mechanisms of seed storage, dormancy and onset of germination. Plant Cell Reports, 2017, 36, 633-635.	5.6	11
63	Leaf primordium size specifies leaf width and vein number among rowâ€ŧype classes in barley. Plant Journal, 2017, 91, 601-612.	5.7	25
64	Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains. Journal of Experimental Botany, 2017, 68, 4595-4612.	4.8	28
65	Whole genome sequencing-based association study to unravel genetic architecture of cooked grain width and length traits in rice. Scientific Reports, 2017, 7, 12478.	3.3	69
66	Investigating glycemic potential of rice by unraveling compositional variations in mature grain and starch mobilization patterns during seed germination. Scientific Reports, 2017, 7, 5854.	3.3	58
67	VRS2 regulates hormone-mediated inflorescence patterning in barley. Nature Genetics, 2017, 49, 157-161.	21.4	127
68	Systems Genetics Identifies a Novel Regulatory Domain of Amylose Synthesis. Plant Physiology, 2017, 173, 887-906.	4.8	71
69	Increase of DNA Methylation at the HvCKX2.1 Promoter by Terminal Drought Stress in Barley. Epigenomes, 2017, 1, 9.	1.8	37
70	A Potential Role of Flag Leaf Potassium in Conferring Tolerance to Drought-Induced Leaf Senescence in Barley. Frontiers in Plant Science, 2016, 7, 206.	3.6	38
71	The Metabolic Signature of Biomass Formation in Barley. Plant and Cell Physiology, 2016, 57, 1943-1960.	3.1	66
72	Tailoring Grain Storage Reserves for a Healthier Rice Diet and its Comparative Status with Other Cereals. International Review of Cell and Molecular Biology, 2016, 323, 31-70.	3.2	56

#	Article	IF	CITATIONS
7 3	Map-based Cloning and Characterization of the BPH18 Gene from Wild Rice Conferring Resistance to Brown Planthopper (BPH) Insect Pest. Scientific Reports, 2016, 6, 34376.	3.3	107
74	A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nature Plants, 2015, 1, 15124.	9.3	263
75	Action of multiple intra-QTL genes concerted around a co-localized transcription factor underpins a large effect QTL. Scientific Reports, 2015, 5, 15183.	3.3	58
76	The Genetic Basis of Composite Spike Form in Barley and â€~Miracle-Wheat'. Genetics, 2015, 201, 155-165.	2.9	109
77	Role of proline in cell wall synthesis and plant development and its implications in plant ontogeny. Frontiers in Plant Science, 2015, 6, 544.	3.6	202
78	Staying Alive or Going to Die During Terminal Senescenceâ€"An Enigma Surrounding Yield Stability. Frontiers in Plant Science, 2015, 6, 1070.	3.6	73
79	Prospects of breeding high-quality rice using post-genomic tools. Theoretical and Applied Genetics, 2015, 128, 1449-1466.	3.6	53
80	Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. Journal of Experimental Botany, 2015, 66, 1737-1748.	4.8	164
81	Variation in primary metabolites in parental and near-isogenic lines of the QTL qDTY 12.1: altered roots and flag leaves but similar spikelets of rice under drought. Molecular Breeding, 2015, 35, 138.	2.1	35
82	AtRD22 and AtUSPL1, Members of the Plant-Specific BURP Domain Family Involved in Arabidopsis thaliana Drought Tolerance. PLoS ONE, 2014, 9, e110065.	2.5	74
83	Molecular Breeding for Malting Quality. , 2014, , 293-309.		0
84	Drought Stress Tolerance Mechanisms in Barley and Its Relevance to Cereals. Biotechnology in Agriculture and Forestry, 2014, , 161-179.	0.2	7
85	Is proline accumulation <i>per se</i> correlated with stress tolerance or is proline homeostasis a more critical issue?. Plant, Cell and Environment, 2014, 37, 300-311.	5.7	535
86	Abscisic Acid Flux Alterations Result in Differential Abscisic Acid Signaling Responses and Impact Assimilation Efficiency in Barley under Terminal Drought Stress. Plant Physiology, 2014, 164, 1677-1696.	4.8	85
87	Unraveling Regulation of the Small Heat Shock Proteins by the Heat Shock Factor HvHsfB2c in Barley: Its Implications in Drought Stress Response and Seed Development. PLoS ONE, 2014, 9, e89125.	2.5	84
88	Seed-Development Programs: A Systems Biology–Based Comparison Between Dicots and Monocots. Annual Review of Plant Biology, 2013, 64, 189-217.	18.7	196
89	The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Reports, 2013, 32, 945-957.	5.6	218
90	Different Omics Approaches in Cereals and Their Possible Implications for Developing a System Biology Approach to Study the Mechanism of Abiotic Stress Tolerance., 2013,, 177-214.		0

#	Article	IF	Citations
91	Identification of quantitative trait loci contributing to yield and seed quality parameters under terminal drought in barley advanced backcross lines. Molecular Breeding, 2013, 32, 71-90.	2.1	73
92	<i>Six-rowed spike4</i> (<i>Vrs4</i>) controls spikelet determinacy and row-type in barley. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13198-13203.	7.1	140
93	Reverse Engineering: A Key Component of Systems Biology to Unravel Global Abiotic Stress Cross-Talk. Frontiers in Plant Science, 2012, 3, 294.	3.6	33
94	Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theoretical and Applied Genetics, 2012, 125, 625-645.	3 . 6	397
95	A genetic playground for enhancing grain number in cereals. Trends in Plant Science, 2012, 17, 91-101.	8.8	194
96	Contrapuntal role of ABA: Does it mediate stress tolerance or plant growth retardation under long-term drought stress?. Gene, 2012, 506, 265-273.	2.2	250
97	Fertility in barley flowers depends on <i>Jekyll</i> functions in male and female sporophytes. New Phytologist, 2012, 194, 142-157.	7.3	9
98	Comparative transcriptome analysis of contrasting foxtail millet cultivars in response to short-term salinity stress. Journal of Plant Physiology, 2011, 168, 280-287.	3 . 5	79
99	Dynamic ¹³ C/ ¹ H NMR imaging uncovers sugar allocation in the living seed. Plant Biotechnology Journal, 2011, 9, 1022-1037.	8.3	69
100	Differential antioxidative responses to dehydration-induced oxidative stress in core set of foxtail millet cultivars [Setaria italica (L.)]. Protoplasma, 2011, 248, 817-828.	2.1	95
101	Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC Plant Biology, 2011, 11, 1.	3.6	214
102	Importance of ABA homeostasis under terminal drought stress in regulating grain filling events. Plant Signaling and Behavior, 2011, 6, 1228-1231.	2.4	15
103	ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. Journal of Experimental Botany, 2011, 62, 2615-2632.	4.8	251
104	Array Platforms and Bioinformatics Tools for the Analysis of Plant Transcriptome in Response to Abiotic Stress. Methods in Molecular Biology, 2010, 639, 71-93.	0.9	25
105	Delineating the structural, functional and evolutionary relationships of sucrose phosphate synthase gene family II in wheat and related grasses. BMC Plant Biology, 2010, 10, 134.	3.6	14
106	De-regulation of abscisic acid contents causes abnormal endosperm development in the barley mutant seg8. Plant Journal, 2010, 64, 589-603.	5.7	59
107	Increasing Sucrose Uptake Capacity of Wheat Grains Stimulates Storage Protein Synthesis Â. Plant Physiology, 2010, 152, 698-710.	4.8	121
108	Robin: An Intuitive Wizard Application for R-Based Expression Microarray Quality Assessment and Analysis Â. Plant Physiology, 2010, 153, 642-651.	4.8	96

#	Article	IF	CITATIONS
109	Molecular Physiology of Seed Maturation and Seed Storage Protein Biosynthesis. , 2010, , 83-104.		9
110	Barley Grain Development. International Review of Cell and Molecular Biology, 2010, 281, 49-89.	3.2	75
111	Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling. BMC Plant Biology, 2009, 9, 4.	3.6	10
112	Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Molecular Genetics and Genomics, 2009, 281, 591-605.	2.1	110
113	Spatiotemporal Profiling of Starch Biosynthesis and Degradation in the Developing Barley Grain Â. Plant Physiology, 2009, 150, 190-204.	4.8	148
114	Quantitative imaging of oil storage in developing crop seeds. Plant Biotechnology Journal, 2008, 6, 31-45.	8.3	60
115	Cloning and expression of the tubulin genes in barley. Cell Biology International, 2008, 32, 557-559.	3.0	5
116	Mutagenesis and Highâ€Throughput Functional Genomics in Cereal Crops: Current Status. Advances in Agronomy, 2008, 98, 357-414.	5.2	4
117	Barley Grain Maturation and Germination: Metabolic Pathway and Regulatory Network Commonalities and Differences Highlighted by New MapMan/PageMan Profiling Tools Â. Plant Physiology, 2008, 146, 1738-1758.	4.8	250
118	Different Hormonal Regulation of Cellular Differentiation and Function in Nucellar Projection and Endosperm Transfer Cells: A Microdissection-Based Transcriptome Study of Young Barley Grains. Plant Physiology, 2008, 148, 1436-1452.	4.8	104
119	Barley Genomics: An Overview. International Journal of Plant Genomics, 2008, 2008, 1-13.	2.2	64
120	Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene, 2007, 388, 1-13.	2.2	281
121	Distinct tubulin genes are differentially expressed during barley grain development. Physiologia Plantarum, 2007, 131, 571-580.	5.2	17
122	Correlation-maximizing surrogate gene space for visual mining of gene expression patterns in developing barley endosperm tissue. BMC Bioinformatics, 2007, 8, 165.	2.6	11
123	Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA- regulated maturation in developing barley seeds. Plant Journal, 2006, 47, 310-327.	5.7	172
124	Antioxidative response in different sorghum species under short-term salinity stress. Acta Physiologiae Plantarum, 2006, 28, 465-475.	2.1	49
125	Generalized relevance LVQ (GRLVQ) with correlation measures for gene expression analysis. Neurocomputing, 2006, 69, 651-659.	5.9	23
126	PageMan: An interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments. BMC Bioinformatics, 2006, 7, 535.	2.6	309

#	Article	IF	CITATIONS
127	Unsupervised Feature Selection for Biomarker Identification in Chromatography and Gene Expression Data. Lecture Notes in Computer Science, 2006, , 274-285.	1.3	2
128	The Methylation Cycle and its Possible Functions in Barley Endosperm Development. Plant Molecular Biology, 2005, 59, 289-307.	3.9	42
129	High-Throughput Multi-dimensional Scaling (HiT-MDS) for cDNA-Array Expression Data. Lecture Notes in Computer Science, 2005, , 625-633.	1.3	16
130	Largeâ€scale analysis of the barley transcriptome based on expressed sequence tags. Plant Journal, 2004, 40, 276-290.	5.7	137
131	Functional association between malting quality trait components and cDNA array based expression patterns in barley (Hordeum vulgare L.). Molecular Breeding, 2004, 14, 153-170.	2.1	72
132	Transcript profiles and deduced changes of metabolic pathways in maternal and filial tissues of developing barley grains. Plant Journal, 2004, 37, 539-553.	5.7	115
133	Transcriptome changes in foxtail millet genotypes at high salinity: Identification and characterization of a PHGPX gene specifically up-regulated by NaCl in a salt-tolerant line. Journal of Plant Physiology, 2004, 161, 467-477.	3.5	70
134	Functional Genomics for Tolerance to Abiotic Stress in Cereals. , 2004, , 483-514.		6
135	Identification of genes specifically expressed in maternal and filial tissues of barley caryopses: a cDNA array analysis. Molecular Genetics and Genomics, 2002, 266, 758-767.	2.1	53
136	Differential gene expression during seed germination in barley (Hordeum vulgare L.). Functional and Integrative Genomics, 2002, 2, 28-39.	3.5	81
137	Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiologia Plantarum, 2000, 109, 435-442.	5.2	292
138	Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Science, 1999, 141, 1-9.	3.6	107
139	Photosynthetic Characteristics in Mulberry during Water Stress and Rewatering. Photosynthetica, 1998, 35, 259-263.	1.7	35
140	Effect of Water Stress on Photosynthesis in Two Mulberry Genotypes with Different drought Tolerance. Photosynthetica, 1998, 35, 279-283.	1.7	35
141	Intriguing Role of Proline in Redox Potential Conferring High Temperature Stress Tolerance. Frontiers in Plant Science, 0, 13, .	3.6	30