
## Katryn J Stacey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4307374/publications.pdf Version: 2024-02-01



KATDVN I STACEV

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A broadly protective antibody that targets the flavivirus NS1 protein. Science, 2021, 371, 190-194.                                                                                  | 12.6 | 66        |
| 2  | MyD88 TIR domain higher-order assembly interactions revealed by microcrystal electron diffraction and serial femtosecond crystallography. Nature Communications, 2021, 12, 2578.     | 12.8 | 55        |
| 3  | Manipulation of epithelial cell death pathways by <i>Shigella</i> . EMBO Journal, 2020, 39, e106202.                                                                                 | 7.8  | 1         |
| 4  | Compromised <scp>NLRP</scp> 3 and <scp>AIM</scp> 2 inflammasome function in autoimmune<br><scp>NZB</scp> /W F1 mouse macrophages. Immunology and Cell Biology, 2019, 97, 17-28.      | 2.3  | 8         |
| 5  | <scp>IRF</scp> 1 and <scp>IRF</scp> 2 regulate the nonâ€canonical inflammasome. EMBO Reports, 2019, 20, e48891.                                                                      | 4.5  | 13        |
| 6  | Dual targeting of dengue virus virions and NS1 protein with the heparan sulfate mimic PG545. Antiviral Research, 2019, 168, 121-127.                                                 | 4.1  | 27        |
| 7  | Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. Journal of<br>Experimental Medicine, 2018, 215, 827-840.                                       | 8.5  | 396       |
| 8  | Caspase-1 Is an Apical Caspase Leading to Caspase-3 Cleavage in the AIM2 Inflammasome Response,<br>Independent of Caspase-8. Journal of Molecular Biology, 2018, 430, 238-247.       | 4.2  | 71        |
| 9  | Plugging the Leak in Dengue Shock. Advances in Experimental Medicine and Biology, 2018, 1062, 89-106.                                                                                | 1.6  | 4         |
| 10 | Membrane vesicles from <i>Pseudomonas aeruginosa</i> activate the noncanonical inflammasome through caspaseâ€5 in human monocytes. Immunology and Cell Biology, 2018, 96, 1120-1130. | 2.3  | 65        |
| 11 | Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6. Immunology and Cell<br>Biology, 2017, 95, 491-495.                                                    | 2.3  | 89        |
| 12 | The molecular mechanisms of signaling by cooperative assembly formation in innate immunity pathways. Molecular Immunology, 2017, 86, 23-37.                                          | 2.2  | 95        |
| 13 | Structural basis of TIR-domain-assembly formation in MAL- and MyD88-dependent TLR4 signaling.<br>Nature Structural and Molecular Biology, 2017, 24, 743-751.                         | 8.2  | 140       |
| 14 | Bacterial membrane vesicles transport their DNA cargo into host cells. Scientific Reports, 2017, 7,<br>7072.                                                                         | 3.3  | 267       |
| 15 | Assessment of Inflammasome Formation by Flow Cytometry. Current Protocols in Immunology, 2016, 114, 14.40.1-14.40.29.                                                                | 3.6  | 27        |
| 16 | Programmed Death-1 Ligand 2-Mediated Regulation of the PD-L1 to PD-1 Axis Is Essential for Establishing<br>CD4 + T Cell Immunity. Immunity, 2016, 45, 333-345.                       | 14.3 | 92        |
| 17 | Cryo-EM Structure of Caspase-8 Tandem DED Filament Reveals Assembly and Regulation Mechanisms of the Death-Inducing Signaling Complex. Molecular Cell, 2016, 64, 236-250.            | 9.7  | 128       |
| 18 | Methods for Delivering DNA to Intracellular Receptors. Methods in Molecular Biology, 2016, 1390,<br>93-106.                                                                          | 0.9  | 6         |

KATRYN J STACEY

| #  | Article                                                                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | <i>&gt;Salmonella</i> employs multiple mechanisms to subvert the TLRâ€inducible zincâ€mediated<br>antimicrobial response of human macrophages. FASEB Journal, 2016, 30, 1901-1912.                                                                                                                                 | 0.5  | 91        |
| 20 | Correcting the NLRP3 inflammasome deficiency in macrophages from autoimmune NZB mice with exon skipping antisense oligonucleotides. Immunology and Cell Biology, 2016, 94, 520-524.                                                                                                                                | 2.3  | 7         |
| 21 | Induction of interferon and cell death in response to cytosolic DNA in chicken macrophages.<br>Developmental and Comparative Immunology, 2016, 59, 145-152.                                                                                                                                                        | 2.3  | 15        |
| 22 | Response to comment on "Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts<br>endothelial cell monolayer integrity―and "Dengue virus NS1 triggers endothelial permeability and<br>vascular leak that is prevented by NS1 vaccination― Science Translational Medicine, 2015, 7, 318lr4. | 12.4 | 3         |
| 23 | The Inflammasome Adaptor ASC Induces Procaspase-8 Death Effector Domain Filaments. Journal of Biological Chemistry, 2015, 290, 29217-29230.                                                                                                                                                                        | 3.4  | 69        |
| 24 | Deficient NLRP3 and AIM2 Inflammasome Function in Autoimmune NZB Mice. Journal of Immunology, 2015, 195, 1233-1241.                                                                                                                                                                                                | 0.8  | 32        |
| 25 | Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Science Translational Medicine, 2015, 7, 304ra142.                                                                                                                                            | 12.4 | 394       |
| 26 | Response to Comment on "Deficient NLRP3 and AIM2 Inflammasome Function in Autoimmune NZB Mice―<br>Journal of Immunology, 2015, 195, 4552-4553.                                                                                                                                                                     | 0.8  | 3         |
| 27 | A Novel Pathway of Cell Death in Response to Cytosolic DNA in<br><b><i>Drosophila</i></b> Cells. Journal of Innate Immunity, 2015, 7, 212-222.                                                                                                                                                                     | 3.8  | 6         |
| 28 | A Novel Flow Cytometric Method To Assess Inflammasome Formation. Journal of Immunology, 2015, 194, 455-462.                                                                                                                                                                                                        | 0.8  | 90        |
| 29 | Identification of Multifaceted Binding Modes for Pyrin and ASC Pyrin Domains Gives Insights into<br>Pyrin Inflammasome Assembly. Journal of Biological Chemistry, 2014, 289, 23504-23519.                                                                                                                          | 3.4  | 37        |
| 30 | The Neutrophil NLRC4 Inflammasome Selectively Promotes IL-1β Maturation without Pyroptosis during Acute Salmonella Challenge. Cell Reports, 2014, 8, 570-582.                                                                                                                                                      | 6.4  | 341       |
| 31 | Mitochondrial apoptosis is dispensable for <scp>NLRP</scp> 3 inflammasome activation but<br>nonâ€apoptotic caspaseâ€8 is required for inflammasome priming. EMBO Reports, 2014, 15, 982-990.                                                                                                                       | 4.5  | 189       |
| 32 | Molecular Mechanism for p202-Mediated Specific Inhibition of AIM2 Inflammasome Activation. Cell Reports, 2013, 4, 327-339.                                                                                                                                                                                         | 6.4  | 81        |
| 33 | Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Current<br>Opinion in Microbiology, 2013, 16, 319-326.                                                                                                                                                                   | 5.1  | 235       |
| 34 | Malaria infection alters the expression of <scp>B</scp> ell activating factor resulting in diminished memory antibody responses and survival. European Journal of Immunology, 2012, 42, 3291-3301.                                                                                                                 | 2.9  | 38        |
| 35 | Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction. Immunobiology, 2012, 217, 1325-1329.                                                                                                                                                               | 1.9  | 140       |
| 36 | DEC-205 is a cell surface receptor for CpG oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16270-16275.                                                                                                                                              | 7.1  | 155       |

KATRYN J STACEY

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The mammalian PYHIN gene family: Phylogeny, evolution and expression. BMC Evolutionary Biology, 2012, 12, 140.                                                                                                                                            | 3.2  | 168       |
| 38 | Intramacrophage survival of uropathogenic Escherichia coli: Differences between diverse clinical isolates and between mouse and human macrophages. Immunobiology, 2011, 216, 1164-1171.                                                                   | 1.9  | 61        |
| 39 | Macrophage Activation and Differentiation Signals Regulate Schlafen-4 Gene Expression: Evidence for Schlafen-4 as a Modulator of Myelopoiesis. PLoS ONE, 2011, 6, e15723.                                                                                 | 2.5  | 67        |
| 40 | The immunostimulatory activity of phosphorothioate CpG oligonucleotides is affected by distal sequence changes. Molecular Immunology, 2011, 48, 1027-1034.                                                                                                | 2.2  | 15        |
| 41 | B cells do not take up bacterial DNA: an essential role for antigen in exposure of DNA to tollâ€like<br>receptorâ€9. Immunology and Cell Biology, 2011, 89, 517-525.                                                                                      | 2.3  | 14        |
| 42 | A visual framework for sequence analysis using <i>n</i> -grams and spectral rearrangement.<br>Bioinformatics, 2010, 26, 737-744.                                                                                                                          | 4.1  | 14        |
| 43 | A clear link between endogenous retroviral LTR activity and Hodgkin's lymphoma. Cell Research, 2010,<br>20, 869-871.                                                                                                                                      | 12.0 | 11        |
| 44 | TLR9â€independent effects of inhibitory oligonucleotides on macrophage responses to <i>S.<br/>typhimurium</i> . Immunology and Cell Biology, 2009, 87, 218-225.                                                                                           | 2.3  | 11        |
| 45 | HIN-200 Proteins Regulate Caspase Activation in Response to Foreign Cytoplasmic DNA. Science, 2009, 323, 1057-1060.                                                                                                                                       | 12.6 | 737       |
| 46 | Differential Effects of CpG DNA on IFN-β Induction and STAT1 Activation in Murine Macrophages versus<br>Dendritic Cells: Alternatively Activated STAT1 Negatively Regulates TLR Signaling in Macrophages.<br>Journal of Immunology, 2007, 179, 3495-3503. | 0.8  | 44        |
| 47 | Plasmodium Strain Determines Dendritic Cell Function Essential for Survival from Malaria. PLoS<br>Pathogens, 2007, 3, e96.                                                                                                                                | 4.7  | 72        |
| 48 | PU.1 and ICSBP control constitutive and IFN-γ-regulated Tlr9 gene expression in mouse macrophages.<br>Journal of Leukocyte Biology, 2007, 81, 1577-1590.                                                                                                  | 3.3  | 41        |
| 49 | Higher-order CpG-DNA stimulation reveals distinct activation requirements for marginal zone and follicular B cells in lupus mice. European Journal of Immunology, 2006, 36, 1951-1962.                                                                    | 2.9  | 20        |
| 50 | CpG DNA Activates Survival in Murine Macrophages through TLR9 and the Phosphatidylinositol<br>3-Kinase-Akt Pathway. Journal of Immunology, 2006, 177, 4473-4480.                                                                                          | 0.8  | 62        |
| 51 | DNA Motifs Suppressing TLR9 Responses. Critical Reviews in Immunology, 2006, 26, 527-544.                                                                                                                                                                 | 0.5  | 33        |
| 52 | Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity. Nature Immunology, 2005, 6, 1011-1019.                                                                           | 14.5 | 241       |
| 53 | The phasevarion: A genetic system controlling coordinated, random switching of expression of<br>multiple genes. Proceedings of the National Academy of Sciences of the United States of America, 2005,<br>102, 5547-5551.                                 | 7.1  | 191       |
| 54 | Cutting Edge: Species-Specific TLR9-Mediated Recognition of CpG and Non-CpG<br>Phosphorothioate-Modified Oligonucleotides. Journal of Immunology, 2005, 174, 605-608.                                                                                     | 0.8  | 129       |

KATRYN J STACEY

| #  | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Differences in Macrophage Activation by Bacterial DNA and CpG-Containing Oligonucleotides. Journal of Immunology, 2005, 175, 3569-3576.                                                                                                                     | 0.8  | 71        |
| 56 | LPS regulates a set of genes in primary murine macrophages by antagonising CSF-1 action.<br>Immunobiology, 2005, 210, 97-107.                                                                                                                               | 1.9  | 58        |
| 57 | The Molecular Basis for the Lack of Immunostimulatory Activity of Vertebrate DNA. Journal of Immunology, 2003, 170, 3614-3620.                                                                                                                              | 0.8  | 164       |
| 58 | Colony-Stimulating Factor-1 Suppresses Responses to CpG DNA and Expression of Toll-Like Receptor 9<br>but Enhances Responses to Lipopolysaccharide in Murine Macrophages. Journal of Immunology, 2002,<br>168, 392-399.                                     | 0.8  | 93        |
| 59 | Regulation of urokinase plasminogen activator gene transcription in the RAW264 murine macrophage<br>cell line by macrophage colony-stimulating factor (CSF-1) is dependent upon the level of cell-surface<br>receptor. Biochemical Journal, 2000, 347, 313. | 3.7  | 3         |
| 60 | Regulation of urokinase plasminogen activator gene transcription in the RAW264 murine macrophage cell line by macrophage colony-stimulating factor (CSF-1) is dependent upon the level of cell-surface receptor. Biochemical Journal, 2000, 347, 313-320.   | 3.7  | 18        |
| 61 | Phosphorothioate Backbone Modification Modulates Macrophage Activation by CpG DNA. Journal of Immunology, 2000, 165, 4165-4173.                                                                                                                             | 0.8  | 116       |
| 62 | Mechanisms of regulation of the MacMARCKS gene in macrophages by bacterial lipopolysaccharide.<br>Journal of Leukocyte Biology, 1999, 66, 528-534.                                                                                                          | 3.3  | 21        |
| 63 | The actions of bacterial DNA on murine macrophages. Journal of Leukocyte Biology, 1999, 66, 542-548.                                                                                                                                                        | 3.3  | 33        |
| 64 | Regulation of the plasminogen activator inhibitor-2 (PAI-2) gene in murine macrophages.<br>Demonstration of a novel pattern of responsiveness to bacterial endotoxin. Journal of Leukocyte<br>Biology, 1999, 66, 172-182.                                   | 3.3  | 53        |
| 65 | Immunostimulatory DNA as an Adjuvant in Vaccination against <i>Leishmania major</i> . Infection and Immunity, 1999, 67, 3719-3726.                                                                                                                          | 2.2  | 134       |
| 66 | IFN-Î <sup>3</sup> Primes Macrophage Responses to Bacterial DNA. Journal of Interferon and Cytokine Research, 1998,<br>18, 263-271.                                                                                                                         | 1.2  | 82        |
| 67 | Persistent Activation of Mitogen-Activated Protein Kinases p42 and p44 and ets-2 Phosphorylation in<br>Response to Colony-Stimulating Factor 1/c-fms Signaling. Molecular and Cellular Biology, 1998, 18,<br>5148-5156.                                     | 2.3  | 98        |
| 68 | RNA synthesis inhibition stabilises urokinase mRNA in macrophages. FEBS Letters, 1994, 356, 311-313.                                                                                                                                                        | 2.8  | 20        |
| 69 | Electroporation and DNAâ€dependent cell death in murine macrophages. Immunology and Cell Biology,<br>1993, 71, 75-85.                                                                                                                                       | 2.3  | 113       |
| 70 | The resistance of macrophage-like tumour cell lines to growth inhibition by lipopolysaccharide and pertussis toxin. British Journal of Haematology, 1993, 84, 392-401.                                                                                      | 2.5  | 16        |
| 71 | Constitutive expression of the urokinase plasminogen activator gene in murine RAW264 macrophages<br>involves distal and 5′ non-coding sequences that are conserved between mouse and pig. Nucleic Acids<br>Research, 1991, 19, 6839-6847.                   | 14.5 | 53        |