Magdalena M Stevanovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4305615/publications.pdf

Version: 2024-02-01

38 papers 1,742 citations

471509 17 h-index 395702 33 g-index

42 all docs 42 docs citations

times ranked

42

3315 citing authors

#	Article	IF	Citations
1	Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles. Journal of Biomaterials Applications, 2022, 36, 1800-1811.	2.4	1
2	In vitro colistin susceptibility of pandrug-resistant Ac. baumannii is restored in the presence of selenium nanoparticles. Journal of Applied Microbiology, 2022, 133, 1197-1206.	3.1	5
3	Methoxyâ€Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of <i>Acinetobacter baumannii</i> by Inhibiting <i>ompA</i> Gene Expression. Chemistry and Biodiversity, 2021, 18, e2000786.	2.1	9
4	The influence of stabilizing agents on physicochemical properties of selenium nanoparticles obtained by chemical reduction. Tehnika, 2021, 76, 137-143.	0.2	0
5	Editorial: Antimicrobial Nanostructured Polymeric Materials and Nanocomposites. Frontiers in Materials, 2021, 8, .	2.4	О
6	Safe-by-design gelatin-modified zinc oxide nanoparticles. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	O
7	Protective Effect of an Exopolysaccharide Produced by Lactiplantibacillus plantarum BGAN8 Against Cadmium-Induced Toxicity in Caco-2 Cells. Frontiers in Microbiology, 2021, 12, 759378.	3.5	12
8	Comparative Study of the Antimicrobial Activity of Selenium Nanoparticles With Different Surface Chemistry and Structure. Frontiers in Bioengineering and Biotechnology, 2020, 8, 624621.	4.1	103
9	Gadolinium-Labelled Cell Scaffolds to Follow-up Cell Transplantation by Magnetic Resonance Imaging. Journal of Functional Biomaterials, 2019, 10, 28.	4.4	6
10	Biomedical Applications of Nanostructured Polymeric Materials. , 2019, , 1-19.		3
11	Biomedical inorganic nanoparticles: preparation, properties, and perspectives. , 2019, , 1-46.		2
12	Poly ($\hat{l}\mu$ -caprolactone) microspheres for prolonged release of selenium nanoparticles. Materials Science and Engineering C, 2019, 96, 776-789.	7.3	22
13	Exopolysaccharide Produced by Probiotic Strain Lactobacillus paraplantarum BGCG11 Reduces Inflammatory Hyperalgesia in Rats. Frontiers in Pharmacology, 2018, 9, 1.	3.5	607
14	Polymeric micro- and nanoparticles for controlled and targeted drug delivery., 2017,, 355-378.		6
15	PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity. Journal of Nanomaterials, 2016, 2016, 1-10.	2.7	15
16	45S5BioglassÂ $^{\odot}$ -based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: Processing, evaluation and antibacterial activity. Colloids and Surfaces B: Biointerfaces, 2015, 132, 208-215.	5.0	77
17	Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity. Acta Biomaterialia, 2014, 10, 151-162.	8.3	77
18	Synthesis of poly(É)-caprolactone) nanospheres in the presence of the protective agent poly(glutamic) Tj ETQq(Colloids and Surfaces B: Biointerfaces, 2014, 117, 414-424.	0 0 0 rgBT 5.0	/Overlock 10 T 11

Colloids and Surfaces B: Biointerfaces, 2014, 117, 414-424.

#	Article	IF	CITATIONS
19	Hydroxyapatite nanopowders prepared in the presence of zirconium ions. Materials Letters, 2014, 122, 296-300.	2.6	30
20	The solvothermal synthesis of magnetic iron oxide nanocrystals and the preparation of hybrid poly(I-lactide)–polyethyleneimine magnetic particles. Colloids and Surfaces B: Biointerfaces, 2013, 109, 236-243.	5.0	21
21	Facile synthesis of poly($\hat{l}\mu$ -caprolactone) micro and nanospheres using different types of polyelectrolytes as stabilizers under ambient and elevated temperature. Composites Part B: Engineering, 2013, 45, 1471-1479.	12.0	15
22	Composite PLGA/AgNpPGA/AscH Nanospheres with Combined Osteoinductive, Antioxidative, and Antimicrobial Activities. ACS Applied Materials & Samp; Interfaces, 2013, 5, 9034-9042.	8.0	35
23	Poly(lactide-co-glycolide)/silver nanoparticles: Synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential. Polymer, 2012, 53, 2818-2828.	3.8	63
24	A new, simple, green, and one-pot four-component synthesis of bare and poly ($\hat{l}\pm,\hat{l}^3$,l-glutamic acid)-capped silver nanoparticles. Colloid and Polymer Science, 2012, 290, 221-231.	2.1	38
25	Effect of poly-α, γ, L-glutamic acid as a capping agent on morphology and oxidative stress-dependent toxicity of silver nanoparticles. International Journal of Nanomedicine, 2011, 6, 2837.	6.7	34
26	DNA damage and alterations in expression of DNA damage responsive genes induced by TiO ₂ nanoparticles in human hepatoma HepG2 cells. Nanotoxicology, 2011, 5, 341-353.	3.0	192
27	ROS-inducing potential, influence of different porogens and in vitro degradation of poly (D,L-lactide-co-glycolide)-based material. EXPRESS Polymer Letters, 2011, 5, 996-1008.	2.1	17
28	An innovative, quick and convenient labeling method for the investigation of pharmacological behavior and the metabolism of poly(DL-lactide-co-glycolide) nanospheres. Nanotechnology, 2009, 20, 335102.	2.6	28
29	Influence of different degradation medium on release of ascorbic acid from poly(D,L-lactide-co-glycolide) nano- and microspheres. Russian Journal of Physical Chemistry A, 2009, 83, 1457-1460.	0.6	5
30	Poly(lactide-co-glycolide)-based Micro and Nanoparticles for the Controlled Drug Delivery of Vitamins. Current Nanoscience, 2009, 5, 1-14.	1.2	141
31	Controllable Synthesis of Horseradish Peroxidase Loaded Poly(D,L-lactide) Nanospheres. Journal of Bionanoscience, 2009, 3, 22-32.	0.4	6
32	Morphological changes of poly(DIâ€lactideâ€ <i>co</i> â€glycolide) nanoâ€particles containing ascorbic acid during <i>in vitro</i> degradation process. Journal of Microscopy, 2008, 232, 511-516.	1.8	2
33	Poly(DL-lactide-<1>co 1 -glycolide) Nanospheres for the Sustained Release of Folic Acid. Journal of Biomedical Nanotechnology, 2008, 4, 349-358.	1.1	47
34	The Effect of Processing Parameters on Characteristics of Poly-L-Lactide Microspheres. Materials Science Forum, 2007, 555, 453-458.	0.3	2
35	The Stabilizer Influence on Morphological Characteristics of Poly-(DL-Lactide-Co-Glycolide) Nanospheres. Materials Science Forum, 2007, 555, 447-452.	0.3	3
36	Preparation and Characterization of Poly(D,L-Lactide-co-Glycolide) Nanoparticles Containing Ascorbic Acid. Journal of Biomedicine and Biotechnology, 2007, 2007, 1-8.	3.0	16

 #	Article	lF	CITATIONS
37	Fabrication, in vitro degradation and the release behaviours of poly(dl-lactide-co-glycolide) nanospheres containing ascorbic acid. Colloids and Surfaces B: Biointerfaces, 2007, 59, 215-223.	5.0	68
38	Stereological analysis of the poly-(dl-lactide-co-glycolide) submicron sphere prepared by solvent/non-solvent chemical methods and centrifugal processing. Journal of Materials Science: Materials in Medicine, 2007, 18, 1339-1344.	3.6	15