
Magdalena M Stevanovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4305615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exopolysaccharide Produced by Probiotic Strain Lactobacillus paraplantarum BGCG11 Reduces Inflammatory Hyperalgesia in Rats. Frontiers in Pharmacology, 2018, 9, 1.	3.5	607
2	DNA damage and alterations in expression of DNA damage responsive genes induced by TiO ₂ nanoparticles in human hepatoma HepG2 cells. Nanotoxicology, 2011, 5, 341-353.	3.0	192
3	Poly(lactide-co-glycolide)-based Micro and Nanoparticles for the Controlled Drug Delivery of Vitamins. Current Nanoscience, 2009, 5, 1-14.	1.2	141
4	Comparative Study of the Antimicrobial Activity of Selenium Nanoparticles With Different Surface Chemistry and Structure. Frontiers in Bioengineering and Biotechnology, 2020, 8, 624621.	4.1	103
5	Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity. Acta Biomaterialia, 2014, 10, 151-162.	8.3	77
6	45S5Bioglass®-based scaffolds coated with selenium nanoparticles or with poly(lactide-co-glycolide)/selenium particles: Processing, evaluation and antibacterial activity. Colloids and Surfaces B: Biointerfaces, 2015, 132, 208-215.	5.0	77
7	Fabrication, in vitro degradation and the release behaviours of poly(dl-lactide-co-glycolide) nanospheres containing ascorbic acid. Colloids and Surfaces B: Biointerfaces, 2007, 59, 215-223.	5.0	68
8	Poly(lactide-co-glycolide)/silver nanoparticles: Synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential. Polymer, 2012, 53, 2818-2828.	3.8	63
9	Poly(DL-lactide- <i>co</i> -glycolide) Nanospheres for the Sustained Release of Folic Acid. Journal of Biomedical Nanotechnology, 2008, 4, 349-358.	1.1	47
10	A new, simple, green, and one-pot four-component synthesis of bare and poly(α,γ,l-glutamic acid)-capped silver nanoparticles. Colloid and Polymer Science, 2012, 290, 221-231.	2.1	38
11	Composite PLGA/AgNpPGA/AscH Nanospheres with Combined Osteoinductive, Antioxidative, and Antimicrobial Activities. ACS Applied Materials & Interfaces, 2013, 5, 9034-9042.	8.0	35
12	Effect of poly-α, γ, L-glutamic acid as a capping agent on morphology and oxidative stress-dependent toxicity of silver nanoparticles. International Journal of Nanomedicine, 2011, 6, 2837.	6.7	34
13	Hydroxyapatite nanopowders prepared in the presence of zirconium ions. Materials Letters, 2014, 122, 296-300.	2.6	30
14	An innovative, quick and convenient labeling method for the investigation of pharmacological behavior and the metabolism of poly(DL-lactide-co-glycolide) nanospheres. Nanotechnology, 2009, 20, 335102.	2.6	28
15	Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles. Materials Science and Engineering C, 2019, 96, 776-789.	7.3	22
16	The solvothermal synthesis of magnetic iron oxide nanocrystals and the preparation of hybrid poly(l·lactide)–polyethyleneimine magnetic particles. Colloids and Surfaces B: Biointerfaces, 2013, 109, 236-243.	5.0	21
17	ROS-inducing potential, influence of different porogens and in vitro degradation of poly (D,L-lactide-co-glycolide)-based material. EXPRESS Polymer Letters, 2011, 5, 996-1008.	2.1	17
18	Preparation and Characterization of Poly(D,L-Lactide-co-Glycolide) Nanoparticles Containing Ascorbic Acid. Journal of Biomedicine and Biotechnology, 2007, 2007, 1-8.	3.0	16

#	Article	IF	CITATIONS
19	Stereological analysis of the poly-(dl-lactide-co-glycolide) submicron sphere prepared by solvent/non-solvent chemical methods and centrifugal processing. Journal of Materials Science: Materials in Medicine, 2007, 18, 1339-1344.	3.6	15
20	Facile synthesis of poly(ε-caprolactone) micro and nanospheres using different types of polyelectrolytes as stabilizers under ambient and elevated temperature. Composites Part B: Engineering, 2013, 45, 1471-1479.	12.0	15
21	PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity. Journal of Nanomaterials, 2016, 2016, 1-10.	2.7	15
22	Protective Effect of an Exopolysaccharide Produced by Lactiplantibacillus plantarum BGAN8 Against Cadmium-Induced Toxicity in Caco-2 Cells. Frontiers in Microbiology, 2021, 12, 759378.	3.5	12
23	Synthesis of poly(É-caprolactone) nanospheres in the presence of the protective agent poly(glutamic) Tj ETQq1 1 Colloids and Surfaces B: Biointerfaces, 2014, 117, 414-424.	0.784314 5.0	f rgBT /Over 11
24	Methoxy‣ubstituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of <i>Acinetobacter baumannii</i> by Inhibiting <i>ompA</i> Gene Expression. Chemistry and Biodiversity, 2021, 18, e2000786.	2.1	9
25	Polymeric micro- and nanoparticles for controlled and targeted drug delivery. , 2017, , 355-378.		6
26	Gadolinium-Labelled Cell Scaffolds to Follow-up Cell Transplantation by Magnetic Resonance Imaging. Journal of Functional Biomaterials, 2019, 10, 28.	4.4	6
27	Controllable Synthesis of Horseradish Peroxidase Loaded Poly(D,L-lactide) Nanospheres. Journal of Bionanoscience, 2009, 3, 22-32.	0.4	6
28	Influence of different degradation medium on release of ascorbic acid from poly(D,L-lactide-co-glycolide) nano- and microspheres. Russian Journal of Physical Chemistry A, 2009, 83, 1457-1460.	0.6	5
29	In vitro colistin susceptibility of pandrug-resistant Ac. baumannii is restored in the presence of selenium nanoparticles. Journal of Applied Microbiology, 2022, 133, 1197-1206.	3.1	5
30	The Stabilizer Influence on Morphological Characteristics of Poly-(DL-Lactide-Co-Glycolide) Nanospheres. Materials Science Forum, 2007, 555, 447-452.	0.3	3
31	Biomedical Applications of Nanostructured Polymeric Materials. , 2019, , 1-19.		3
32	The Effect of Processing Parameters on Characteristics of Poly-L-Lactide Microspheres. Materials Science Forum, 2007, 555, 453-458.	0.3	2
33	Morphological changes of poly(Dlâ€lactideâ€ <i>co</i> â€glycolide) nanoâ€particles containing ascorbic acid during <i>in vitro</i> degradation process. Journal of Microscopy, 2008, 232, 511-516.	1.8	2
34	Biomedical inorganic nanoparticles: preparation, properties, and perspectives. , 2019, , 1-46.		2
35	Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles. Journal of Biomaterials Applications, 2022, 36, 1800-1811.	2.4	1
36	The influence of stabilizing agents on physicochemical properties of selenium nanoparticles obtained by chemical reduction. Tehnika, 2021, 76, 137-143.	0.2	0

#	Article	IF	CITATIONS
37	Editorial: Antimicrobial Nanostructured Polymeric Materials and Nanocomposites. Frontiers in Materials, 2021, 8, .	2.4	ο
38	Safe-by-design gelatin-modified zinc oxide nanoparticles. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	0