
Yoku Hayakawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4305249/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	OLGIM staging and proton pump inhibitor use predict the risk of gastric cancer. Gut, 2022, 71, 1043-1044.	12.1	11
2	Artificial intelligence versus expert endoscopists for diagnosis of gastric cancer in patients who have undergone upper gastrointestinal endoscopy. Endoscopy, 2022, 54, 780-784.	1.8	23
3	Machine learning–based personalized prediction of gastric cancer incidence using the endoscopic and histologic findings at the initial endoscopy. Gastrointestinal Endoscopy, 2022, 95, 864-872.	1.0	23
4	The Origin and Contribution of Cancer-Associated Fibroblasts in Colorectal Carcinogenesis. Gastroenterology, 2022, 162, 890-906.	1.3	63
5	MNX1-HNF1B Axis Is Indispensable for Intraductal Papillary Mucinous Neoplasm Lineages. Gastroenterology, 2022, 162, 1272-1287.e16.	1.3	16
6	Chemoprevention for Colorectal Cancers: Are Chemopreventive Effects Different Between Left and Right Sided Colorectal Cancers?. Digestive Diseases and Sciences, 2022, , 1.	2.3	3
7	Adult enteric Dclk1-positive glial and neuronal cells reveal distinct responses to acute intestinal injury. American Journal of Physiology - Renal Physiology, 2022, 322, G583-G597.	3.4	2
8	Inhibiting SCAP/SREBP exacerbates liver injury and carcinogenesis in murine nonalcoholic steatohepatitis. Journal of Clinical Investigation, 2022, 132, .	8.2	33
9	Chemoprevention of Oesophageal Squamous-Cell Carcinoma and Adenocarcinoma: A Multicentre Retrospective Cohort Study. Digestion, 2022, 103, 192-204.	2.3	10
10	Clinicopathological Features of Gastric Cancer with Autoimmune Gastritis. Biomedicines, 2022, 10, 884.	3.2	9
11	Effectiveness and safety of chemotherapy for patients with malignant gastrointestinal obstruction: A Japanese population-based cohort study. World Journal of Clinical Cases, 2022, 10, 5253-5265.	0.8	1
12	Râ€ \mathfrak{s} pondin signaling in the stomach: isthmal Lgr4 rules. EMBO Journal, 2022, 41, .	7.8	1
13	Mist1+ gastric isthmus stem cells are regulated by Wnt5a and expand in response to injury and inflammation in mice. Gut, 2021, 70, 654-665.	12.1	30
14	The Balance of Stromal BMP Signaling Mediated by GREM1 and ISLR Drives Colorectal Carcinogenesis. Gastroenterology, 2021, 160, 1224-1239.e30.	1.3	76
15	PD-1 Signaling Promotes Tumor-Infiltrating Myeloid-Derived Suppressor Cells and Gastric Tumorigenesis in Mice. Gastroenterology, 2021, 160, 781-796.	1.3	67
16	International Observational Survey of the Effectiveness of Personal Protective Equipment during Endoscopic Procedures Performed in Patients with COVID-19. Digestion, 2021, 102, 845-853.	2.3	8
17	Delineating proinflammatory microenvironmental signals by ex vivo modeling of the immature intestinal stroma. Scientific Reports, 2021, 11, 7200.	3.3	1
18	Stromal DLK1 promotes proliferation and inhibits differentiation of the intestinal epithelium during development. American Journal of Physiology - Renal Physiology, 2021, 320, G506-G520.	3.4	4

Υοκυ Ηαγακαωα

#	Article	IF	CITATIONS
19	Use of Antibiotics and Probiotics Reduces the Risk of Metachronous Gastric Cancer after Endoscopic Resection. Biology, 2021, 10, 455.	2.8	8
20	Axin2+ Peribiliary Glands in the Periampullary Region Generate Biliary Epithelial Stem Cells That Give Rise to Ampullary Carcinoma. Gastroenterology, 2021, 160, 2133-2148.e6.	1.3	16
21	Nonsteroidal antiâ€inflammatory drugs prevent gastric cancer associated with the use of proton pump inhibitors after Helicobacter pylori eradication. JGH Open, 2021, 5, 770-777.	1.6	4
22	The colorectal cancer lipidome: Is there any differences of lipid species between right and left colorectal cancers?. Gastroenterology, 2021, , .	1.3	2
23	Helicobacter pylori CagA elicits BRCAness to induce genome instability that may underlie bacterial gastric carcinogenesis. Cell Host and Microbe, 2021, 29, 941-958.e10.	11.0	66
24	Letter: predictive model for gastric cancer after eradication of Helicobacter pylori —a survival analysis using a deep learning algorithm. Alimentary Pharmacology and Therapeutics, 2021, 54, 528-529.	3.7	7
25	Stem cells and origins of cancer in the upper gastrointestinal tract. Cell Stem Cell, 2021, 28, 1343-1361.	11.1	42
26	Cell fate analysis of zone 3 hepatocytes in liver injury and tumorigenesis. JHEP Reports, 2021, 3, 100315.	4.9	12
27	Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. Science, 2021, 373, eabj0486.	12.6	99
28	Plasticity of Intestinal Epithelium: Stem Cell Niches and Regulatory Signals. International Journal of Molecular Sciences, 2021, 22, 357.	4.1	40
29	Prox1-positive cells monitor and sustain the murine intestinal epithelial cholinergic niche. Nature Communications, 2020, 11, 111.	12.8	40
30	Effect of aspirin use on gastric cancer incidence and survival: A systematic review and metaâ€analysis. JGH Open, 2020, 4, 117-125.	1.6	18
31	Distinct Features of Autoimmune Gastritis in Patients with Open-Type Chronic Gastritis in Japan. Biomedicines, 2020, 8, 419.	3.2	11
32	Deletion of Histone Methyltransferase G9a Suppresses Mutant Kras-driven Pancreatic Carcinogenesis. Cancer Genomics and Proteomics, 2020, 17, 695-705.	2.0	9
33	Interleukin-1β-induced pancreatitis promotes pancreatic ductal adenocarcinoma via B lymphocyte–mediated immune suppression. Gut, 2020, 70, gutjnl-2019-319912.	12.1	32
34	Hormonal Suppression of Stem Cells Inhibits Symmetric Cell Division and Gastric Tumorigenesis. Cell Stem Cell, 2020, 26, 739-754.e8.	11.1	33
35	Efficacy and safety of a new rifabutinâ€based triple therapy with vonoprazan for refractory <i>Helicobacter pylori</i> infection: A prospective singleâ€arm study. Helicobacter, 2020, 25, e12719.	3.5	21
36	Hypergastrinemia Expands Gastric ECL Cells Through CCK2R+ Progenitor Cells via ERK Activation. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 434-449.e1.	4.5	22

Υοκύ Ηαγακάψα

#	Article	IF	CITATIONS
37	GPR30-Expressing Gastric Chief Cells Do Not Dedifferentiate But Are Eliminated via PDK-Dependent Cell Competition During Development of Metaplasia. Gastroenterology, 2020, 158, 1650-1666.e15.	1.3	40
38	Tumor microenvironment in gastric cancers. Cancer Science, 2020, 111, 2696-2707.	3.9	160
39	Dysregulated Immune Responses by ASK1 Deficiency Alter Epithelial Progenitor Cell Fate and Accelerate Metaplasia Development during H. pylori Infection. Microorganisms, 2020, 8, 1995.	3.6	5
40	Role of Muscarinic Acetylcholine Signaling in Gastrointestinal Cancers. Biomedicines, 2019, 7, 58.	3.2	17
41	Alpha-Blockers As Colorectal Cancer Chemopreventive: Findings from a Case–Control Study, Human Cell Cultures, and In Vivo Preclinical Testing. Cancer Prevention Research, 2019, 12, 185-194.	1.5	5
42	The Reduction in Gastric Atrophy after Helicobacter pylori Eradication Is Reduced by Treatment with Inhibitors of Gastric Acid Secretion. International Journal of Molecular Sciences, 2019, 20, 1913.	4.1	12
43	BHLHA15-Positive Secretory Precursor Cells Can Give Rise to Tumors in Intestine and Colon in Mice. Gastroenterology, 2019, 156, 1066-1081.e16.	1.3	34
44	Mutant IDH1 confers resistance to energy stress in normal biliary cells through PFKP-induced aerobic glycolysis and AMPK activation. Scientific Reports, 2019, 9, 18859.	3.3	18
45	Detection of Premalignant Gastrointestinal Lesions Using Surface-Enhanced Resonance Raman Scattering–Nanoparticle Endoscopy. ACS Nano, 2019, 13, 1354-1364.	14.6	40
46	Three types of metaplasia model through <i>Kras</i> activation, <i>Pten</i> deletion, or <i>Cdh1</i> deletion in the gastric epithelium. Journal of Pathology, 2019, 247, 35-47.	4.5	28
47	Genetic editing of colonic organoids provides a molecularly distinct and orthotopic preclinical model of serrated carcinogenesis. Gut, 2019, 68, 684-692.	12.1	84
48	Distinct Chemopreventive Effects of Aspirin in Diffuse and Intestinal-Type Gastric Cancer. Cancer Prevention Research, 2018, 11, 279-286.	1.5	12
49	Long-term proton pump inhibitor use is a risk factor of gastric cancer after treatment for <i>Helicobacter pylori</i> : a retrospective cohort analysis. Gut, 2018, 67, 1908-1910.	12.1	48
50	β2 Adrenergic-Neurotrophin Feedforward Loop Promotes Pancreatic Cancer. Cancer Cell, 2018, 33, 75-90.e7.	16.8	287
51	Gastric Stem Cell and Cellular Origin of Cancer. Biomedicines, 2018, 6, 100.	3.2	19
52	Adhesive Interactions between Mononuclear Phagocytes and Intestinal Epithelium Perturb Normal Epithelial Differentiation and Serve as a Therapeutic Target in Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2018, 12, 1219-1231.	1.3	16
53	Cholinergic Signaling via Muscarinic Receptors Directly and Indirectly Suppresses Pancreatic Tumorigenesis and Cancer Stemness. Cancer Discovery, 2018, 8, 1458-1473.	9.4	158
54	The Tuft Cell-ILC2 Circuit Integrates Intestinal Defense and Homeostasis. Cell, 2018, 174, 251-253.	28.9	15

Υοκύ Ηαγακάψα

#	Article	IF	CITATIONS
55	Efficacy of Vonoprazan for Gastroesophageal Reflux Symptoms in Patients with Proton Pump Inhibitor-resistant Non-erosive Reflux Disease. Internal Medicine, 2018, 57, 2443-2450.	0.7	18
56	Role of warfarin as a predictor of recurrent bleeding after negative small-bowel capsule endoscopy. Gastrointestinal Endoscopy, 2018, 88, 574-574.e2.	1.0	1
57	Mature gastric chief cells are not required for the development of metaplasia. American Journal of Physiology - Renal Physiology, 2018, 314, G583-G596.	3.4	29
58	Sessile serrated adenoma detection rate is correlated with adenoma detection rate. World Journal of Gastrointestinal Oncology, 2018, 10, 82-90.	2.0	23
59	Association between gastric cancer and the Kyoto classification of gastritis. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 1581-1586.	2.8	50
60	lsthmus Progenitors, Not Chief Cells, Are the Likely Origin of Metaplasia in eR1-CreERT; LSL-KrasG12D Mice. Gastroenterology, 2017, 152, 2078-2079.	1.3	6
61	Biliary epithelial injury-induced regenerative response by IL-33 promotes cholangiocarcinogenesis from peribiliary glands. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3806-E3815.	7.1	65
62	Prevalence of pks-positive Escherichia coli in Japanese patients with or without colorectal cancer. Gut Pathogens, 2017, 9, 35.	3.4	43
63	The Origins of Gastric Cancer From Gastric Stem Cells: LessonsÂFrom Mouse Models. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 331-338.	4.5	51
64	Isthmus Stem Cells Are the Origins of Metaplasia in the Gastric Corpus. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4, 89-94.	4.5	42
65	Nerve Growth Factor Promotes Gastric Tumorigenesis through Aberrant Cholinergic Signaling. Cancer Cell, 2017, 31, 21-34.	16.8	332
66	Nerves switch on angiogenic metabolism. Science, 2017, 358, 305-306.	12.6	22
67	Muscarinic Receptor-3 Modulates YAP Signaling in Gastric Stem and Cancer Cells. Gastroenterology, 2017, 152, S19-S20.	1.3	1
68	Stromal Dclk1 Expression Labels Multi-Potential Neural Progenitor Cells in the Enteric Nervous System. Gastroenterology, 2017, 152, S128-S129.	1.3	0
69	3D Co-Culture System of Intestinal Organoids and Dendritic Cells to Study Epithelial Differentiation. Gastroenterology, 2017, 152, S134-S135.	1.3	5
70	Bone Marrow Myeloid Cells Regulate Myeloid-Biased Hematopoietic Stem Cells via a Histamine-Dependent Feedback Loop. Cell Stem Cell, 2017, 21, 747-760.e7.	11.1	68
71	Dclk1-expressing tuft cells: critical modulators of the intestinal niche?. American Journal of Physiology - Renal Physiology, 2017, 313, G285-G299.	3.4	76
72	Metaplasia in the Stomach—Precursor of Gastric Cancer?. International Journal of Molecular Sciences, 2017, 18, 2063.	4.1	60

Υοκύ Ηαγακάψα

#	Article	IF	CITATIONS
73	Colonoscopy reduces colorectal cancer mortality: A multicenter, long-term, colonoscopy-based cohort study. PLoS ONE, 2017, 12, e0185294.	2.5	25
74	Gastrin stimulates a cholecystokinin-2-receptor-expressing cardia progenitor cell and promotes progression of Barrett's-like esophagus. Oncotarget, 2017, 8, 203-214.	1.8	53
75	CXCR4-expressing <i>Mist1</i> + progenitors in the gastric antrum contribute to gastric cancer development. Oncotarget, 2017, 8, 111012-111025.	1.8	30
76	Abstract 3339: Muscarinic acetylcholine receptor subtype 3 regulates gastric stem cell expansion and gastric cancer progression by controlling YAP activation. , 2017, , .		0
77	Abstract LB-144: Tff2 labels pancreatic progenitors that lack proliferative potential during tissue regeneration but can serve as the origin of pancreatic cancer. , 2017, , .		0
78	803 MIST1 Positive Stem Cells in the Antrum Serve As a Cell-of-Origin for Gastric Cancer With APC Loss. Gastroenterology, 2016, 150, S169-S170.	1.3	0
79	Su1865 Bacterial Infection Contributes to Inflammation-Associated Cancer Progression via Increased Trafficking of HDC-Expressing Neutrophils. Gastroenterology, 2016, 150, S574.	1.3	0
80	1007 Sessile Serrated Adenoma Detection Rate Is Correlated With Adenoma Detection Rate. Gastrointestinal Endoscopy, 2016, 83, AB192-AB193.	1.0	0
81	Dclk1 Defines Quiescent Pancreatic Progenitors that Promote Injury-Induced Regeneration and Tumorigenesis. Cell Stem Cell, 2016, 18, 441-455.	11.1	196
82	TGF-Î ² Signaling in Dendritic Cells Governs Colonic Homeostasis by Controlling Epithelial Differentiation and the Luminal Microbiota. Journal of Immunology, 2016, 196, 4603-4613.	0.8	30
83	Oesophageal adenocarcinoma and gastric cancer: should we mind the gap?. Nature Reviews Cancer, 2016, 16, 305-318.	28.4	96
84	Gastrin and upper GI cancers. Current Opinion in Pharmacology, 2016, 31, 31-37.	3.5	52
85	Efficacy of triple therapy with esomeprazole, amoxicillin, and sitafloxacin as a third-line Helicobacter pylori eradication regimen. International Journal of Infectious Diseases, 2016, 51, 66-69.	3.3	11
86	Vonoprazan <i>versus</i> conventional proton pump inhibitorâ€based triple therapy as firstâ€line treatment against <i>Helicobacter pylori</i> : A multicenter retrospective study in clinical practice. Journal of Digestive Diseases, 2016, 17, 670-675.	1.5	30
87	Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nature Communications, 2016, 7, 13096.	12.8	190
88	Gastric Metaplasia Induced by Helicobacter pylori Is Associated with Enhanced SOX9 Expression via Interleukin-1 Signaling. Infection and Immunity, 2016, 84, 562-572.	2.2	39
89	Histologic intestinal metaplasia and endoscopic atrophy are predictors of gastric cancer development after Helicobacter pylori eradication. Gastrointestinal Endoscopy, 2016, 84, 618-624.	1.0	168
90	Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer. Nature Communications, 2016, 7, 10517.	12.8	86

Υοκυ Ηαγακαψα

#	Article	IF	CITATIONS
91	Vagotomy and Gastric Tumorigenesis. Current Neuropharmacology, 2016, 14, 967-972.	2.9	44
92	Abstract 2340: PD-1 blockade suppresses gastric cancer development by promoting antitumor immunity in mice. , 2016, , .		0
93	Abstract 912: Mist1+ secretory progenitor cells can give rise to cancer in the intestine and colon. , 2016, , .		0
94	Abstract 1705: CCK2R marks a gastrin-responsive stem cell that gives rise to Barrett's esophagus. , 2016, , .		0
95	Abstract 5111: A novel \hat{I}^2 2 adrenergic-nerve growth factor feed forward loop promotes pancreatic cancer. , 2016, , .		0
96	Inhibition of autophagy exerts anti-colon cancer effects via apoptosis induced by p53 activation and ER stress. BMC Cancer, 2015, 15, 795.	2.6	38
97	Krt19+/Lgr5â^ Cells Are Radioresistant Cancer-Initiating Stem Cells in the Colon and Intestine. Cell Stem Cell, 2015, 16, 627-638.	11.1	161
98	Mist1 Expressing Gastric Stem Cells Maintain the Normal and Neoplastic Gastric Epithelium and Are Supported by a Perivascular Stem Cell Niche. Cancer Cell, 2015, 28, 800-814.	16.8	245
99	Characterization of a New Small Bowel Adenocarcinoma Cell Line and Screening of Anti-Cancer Drug against Small Bowel Adenocarcinoma. American Journal of Pathology, 2015, 185, 550-562.	3.8	13
100	Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential. Cell, 2015, 160, 269-284.	28.9	535
101	CCK2R identifies and regulates gastric antral stem cell states and carcinogenesis. Gut, 2015, 64, 544-553.	12.1	87
102	Abstract B73: Adrenergic signaling promotes pancreatic tumor initiation and progression. , 2015, , .		0
103	Abstract 5079: Parasympathetic signaling suppresses pancreatic cancer development. , 2015, , .		1
104	Abstract 1167: Inhibition of WNT/ß-catenin signaling-related glutamine metabolism but not the Warburg effect in denervation-induced suppression of gastric tumorigenesis. , 2015, , .		0
105	Abstract 987: NGF promotes gastrointestinal cancer development through tumor-associated neurogenesis. , 2015, , .		0
106	Loss of liver E-cadherin induces sclerosing cholangitis and promotes carcinogenesis. Proceedings of the United States of America, 2014, 111, 1090-1095.	7.1	104
107	Denervation suppresses gastric tumorigenesis. Science Translational Medicine, 2014, 6, 250ra115.	12.4	427
108	Long-lived intestinal tuft cells serve as colon cancer–initiating cells. Journal of Clinical Investigation, 2014, 124, 1283-1295.	8.2	324

Υοκυ Ηαγακαωα

#	Article	IF	CITATIONS
109	RhoA Mutations Identified in Diffuse Gastric Cancer. Cancer Cell, 2014, 26, 9-11.	16.8	33
110	Abstract 4092: Long-lived Dclk1+ cells serve as colon cancer initiating cells. , 2014, , .		0
111	Promotion of DNA repair by nuclear IKK \hat{I}^2 phosphorylation of ATM in response to genotoxic stimuli. Oncogene, 2013, 32, 1854-1862.	5.9	22
112	Progastrin Stimulates Colonic Cell Proliferation via CCK2R- and β-Arrestin–Dependent Suppression of BMP2. Gastroenterology, 2013, 145, 820-830.e10.	1.3	37
113	Mouse Models of Gastric Cancer. Cancers, 2013, 5, 92-130.	3.7	78
114	Differential Roles of ASK1 and TAK1 in Helicobacter pylori-Induced Cellular Responses. Infection and Immunity, 2013, 81, 4551-4560.	2.2	24
115	Therapeutic effect of câ€Jun Nâ€ŧerminal kinase inhibition on pancreatic cancer. Cancer Science, 2013, 104, 337-344.	3.9	36
116	Interleukin-6 Mediates Epithelial–Stromal Interactions and Promotes Gastric Tumorigenesis. PLoS ONE, 2013, 8, e60914.	2.5	70
117	Abstract LB-267: Role of keratin-19 positive stem cells in gastric tumorigenesis , 2013, , .		Ο
118	Role of Interleukin-32 in Helicobacter pylori-Induced Gastric Inflammation. Infection and Immunity, 2012, 80, 3795-3803.	2.2	62
119	Apoptosis signalâ€regulating kinaseâ€1 inhibitor as a potent therapeutic drug for the treatment of gastric cancer. Cancer Science, 2012, 103, 2181-2185.	3.9	47
120	Sitafloxacin resistance in Helicobacter pylori isolates and sitafloxacin-based triple therapy as a third-line regimen in Japan. International Journal of Antimicrobial Agents, 2012, 39, 352-355.	2.5	28
121	Clinical Usefulness of Sitafloxacin-Based Triple Therapy as a Third Line Regimen for Helicobacter pylori Eradication in Japan. Gastroenterology, 2011, 140, S-879.	1.3	1
122	Helicobacter pylori Induces Interleukin-32 Production by Human Gastric Epithelial Cell. Gastroenterology, 2011, 140, S-350.	1.3	0
123	Analysis of the Role of JNK and Therapeutic Effect of JNK Inhibition in Pancreatic Cancer. Gastroenterology, 2011, 140, S-35.	1.3	0
124	Anti-Tumor Activity of the Proteasome Inhibitor Bortezomib in Gastric Cancer. Gastroenterology, 2011, 140, S-674.	1.3	4
125	Anti-tumor activity of the proteasome inhibitor bortezomib in gastric cancer. International Journal of Oncology, 2011, 39, 1529-36.	3.3	13
126	Colon cancer-derived factors activate NF-κB in myeloid cells via TLR2 to link inflammation and tumorigenesis. Molecular Medicine Reports, 2011, 4, 1083-8.	2.4	7

Υοκυ Ηαγακαωα

#	Article	IF	CITATIONS
127	Apoptosis signal-regulating kinase 1 inhibits hepatocarcinogenesis by controlling the tumor-suppressing function of stress-activated mitogen-activated protein kinase. Hepatology, 2011, 54, 185-195.	7.3	74
128	Apoptosis signal-regulating kinase 1 and cyclin D1 compose a positive feedback loop contributing to tumor growth in gastric cancer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 780-785.	7.1	96
129	Abstract 3133: Apoptosis signal-regulating kinase 1 and cyclin D1 compose a positive feedback loop contributing to tumor growth in gastric cancer. , 2011, , .		0
130	Apoptosis Signal-Regulating Kinase 1 Regulates Colitis and Colitis-Associated Tumorigenesis by the Innate Immune Responses. Gastroenterology, 2010, 138, 1055-1067.e4.	1.3	50
131	Inhibitor of κB Kinase Beta Regulates Gastric Carcinogenesis via Interleukin-1α Expression. Gastroenterology, 2010, 139, 226-238.e6.	1.3	44
132	Constitutive NF-κB Activation in Colorectal Carcinoma Plays a Key Role in Angiogenesis, Promoting Tumor Growth. Clinical Cancer Research, 2009, 15, 2248-2258.	7.0	209
133	Ikappa B kinaseβ/nuclear factor-κB activation controls the development of liver metastasis by way of interleukin-6 expression. Hepatology, 2009, 50, 1851-1860.	7.3	63
134	Serum ILâ€6 levels and the risk for hepatocarcinogenesis in chronic hepatitis C patients: An analysis based on gender differences. International Journal of Cancer, 2009, 125, 2264-2269.	5.1	160
135	Effectiveness of ll̂ºB kinase inhibitors in murine colitis-associated tumorigenesis. Journal of Gastroenterology, 2009, 44, 935-943.	5.1	36