Manuel Arca-sedda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4304622/publications.pdf

Version: 2024-02-01

236925 223800 2,129 52 25 46 citations h-index g-index papers 53 53 53 1806 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 2019, 36, 143001.	4.0	451
2	mocca-survey Database I: Galactic globular clusters harbouring a black hole subsystem. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1844-1854.	4.4	93
3	The missing link in gravitational-wave astronomy: discoveries waiting in the decihertz range. Classical and Quantum Gravity, 2020, 37, 215011.	4.0	90
4	Unveiling the gravitational universe at μ-Hz frequencies. Experimental Astronomy, 2021, 51, 1333-1383.	3.7	88
5	The origin of the first neutron star – neutron star merger. Astronomy and Astrophysics, 2018, 615, A91.	5.1	85
6	Gravitational wave sources from inspiralling globular clusters in the Galactic Centre and similar environments. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4423-4442.	4.4	84
7	MOCCA-Survey Database – I. Unravelling black hole subsystems in globular clusters. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4652-4664.	4.4	83
8	Hierarchical black hole mergers in young, globular and nuclear star clusters: the effect of metallicity, spin and cluster properties. Monthly Notices of the Royal Astronomical Society, 2021, 505, 339-358.	4.4	77
9	The globular cluster migratory origin of nuclear star clusters. Monthly Notices of the Royal Astronomical Society, 2014, 444, 3738-3755.	4.4	74
10	Fingerprints of Binary Black Hole Formation Channels Encoded in the Mass and Spin of Merger Remnants. Astrophysical Journal, 2020, 894, 133.	4.5	70
11	HENIZE 2–10: THE ONGOING FORMATION OF A NUCLEAR STAR CLUSTER AROUND A MASSIVE BLACK HOLE. Astrophysical Journal, 2015, 806, 220.	4.5	64
12	The MEGaN project II. Gravitational waves from intermediate-mass and binary black holes around a supermassive black hole. Monthly Notices of the Royal Astronomical Society, 2019, 483, 152-171.	4.4	58
13	DYNAMICAL FRICTION IN CUSPY GALAXIES. Astrophysical Journal, 2014, 785, 51.	4.5	54
14	The cosmic evolution of binary black holes in young, globular, and nuclear star clusters: rates, masses, spins, and mixing fractions. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5797-5816.	4.4	54
15	Birth, Life, and Death of Black Hole Binaries around Supermassive Black Holes: Dynamical Evolution of Gravitational Wave Sources. Astrophysical Journal, 2020, 891, 47.	4.5	48
16	Stellar black hole binary mergers in open clusters. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1233-1246.	4.4	47
17	Direct <i>N</i> -body simulation of the Galactic centre. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3279-3290.	4.4	45
18	On the formation of compact, massive subsystems in stellar clusters and its relation with intermediate-mass black holes. Monthly Notices of the Royal Astronomical Society, 2016, 455, 35-50.	4.4	38

#	Article	IF	Citations
19	Dissecting the properties of neutron star–black hole mergers originating in dense star clusters. Communications Physics, 2020, 3, .	5.3	37
20	Using final black hole spins and masses to infer the formation history of the observed population of gravitational wave sources. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	34
21	Breaching the Limit: Formation of GW190521-like and IMBH Mergers in Young Massive Clusters. Astrophysical Journal, 2021, 920, 128.	4.5	30
22	Mass and Rate of Hierarchical Black Hole Mergers in Young, Globular and Nuclear Star Clusters. Symmetry, 2021, 13, 1678.	2.2	29
23	Lack of nuclear clusters in dwarf spheroidal galaxies: implications for massive black holes formation and the cusp/core problem. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3060-3070.	4.4	28
24	Black hole mergers in compact star clusters and massive black hole formation beyond the mass gap. Monthly Notices of the Royal Astronomical Society, 2022, 512, 884-898.	4.4	27
25	Gamma-ray and X-ray emission from the Galactic centre: hints on the nuclear star cluster formation history. Monthly Notices of the Royal Astronomical Society, 2018, 479, 900-916.	4.4	26
26	Order in the chaos. Astronomy and Astrophysics, 2021, 650, A189.	5.1	26
27	The MEGaN project – I. Missing formation of massive nuclear clusters and tidal disruption events by star clusters–massive black hole interactions. Monthly Notices of the Royal Astronomical Society, 2017, 471, 478-490.	4.4	25
28	Cosmological Insights into the Early Accretion of r-process-enhanced Stars. I. A Comprehensive Chemodynamical Analysis of LAMOST J1109+0754. Astrophysical Journal, 2020, 903, 88.	4.5	25
29	The dearth of nuclear star clusters in bright galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2457-2466.	4.4	24
30	Preparing the next gravitational million-body simulations: evolution of single and binary stars in <tt> <scp>nbody6++gpu</scp> </tt> , <tt> <scp>mocca</scp> </tt> , and <tt> <scp>mcluster</scp> </tt> . Monthly Notices of the Royal Astronomical Society, 2022, 511, 4060-4089.	4.4	24
31	On the Origin of a Rotating Metal-poor Stellar Population in the Milky Way Nuclear Cluster. Astrophysical Journal Letters, 2020, 901, L29.	8.3	23
32	Supermassive black holes coalescence mediated by massive perturbers: implications for gravitational waves emission and nuclear cluster formation. Monthly Notices of the Royal Astronomical Society, 2019, 484, 520-542.	4.4	22
33	Revealing the Formation of the Milky Way Nuclear Star Cluster via Chemo-dynamical Modeling. Astrophysical Journal Letters, 2020, 901, L28.	8.3	21
34	Dynamical Formation of the GW190814 Merger. Astrophysical Journal Letters, 2021, 908, L38.	8.3	19
35	On the eccentricity evolution of massive black hole binaries in stellar backgrounds. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 493, L114-L119.	3.3	17
36	Merging stellar and intermediate-mass black holes in dense clusters: implications for LIGO, LISA, and the next generation of gravitational wave detectors. Astronomy and Astrophysics, 2021, 652, A54.	5.1	17

#	Article	IF	CITATIONS
37	Globular clusters as tracers of the host galaxy mass distribution: the Fornax dSph test case. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4335-4342.	4.4	15
38	GW190521 formation via three-body encounters in young massive star clusters. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3045-3054.	4.4	15
39	The missing link in gravitational-wave astronomy. Experimental Astronomy, 2021, 51, 1427-1440.	3.7	15
40	MOCCA-survey data base: extra galactic globular clusters – II. Milky Way and Andromeda. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5751-5766.	4.4	6
41	Future merger of the Milky Way with the Andromeda galaxy and the fate of their supermassive black holes. Astronomy and Astrophysics, 2020, 642, A30.	5.1	5
42	The Long-term Evolution of Main-sequence Binaries in DRAGON Simulations. Astrophysical Journal, Supplement Series, 2021, 253, 14.	7.7	4
43	Are we observing an NSC in course of formation in the NGC 4654 galaxy?. Monthly Notices of the Royal Astronomical Society, 2021, 503, 594-602.	4.4	4
44	Stellar-mass Black Holes in Globular Clusters: Dynamical consequences and observational signatures. Proceedings of the International Astronomical Union, 2019, 14, 395-399.	0.0	2
45	The connection between stellar and nuclear clusters: Can an IMBH be sitting at the heart of the Milky Way?. Proceedings of the International Astronomical Union, 2019, 14, 51-55.	0.0	2
46	The collision between the Milky Way and Andromeda and the fate of their Supermassive Black Holes. Proceedings of the International Astronomical Union, 2019, 14, 161-164.	0.0	1
47	The dense stellar systems around galactic massive black holes. , 2013, , .		1
48	The interaction between supermassive black holes and globular clusters. Proceedings of the International Astronomical Union, 2014, 10, 118-121.	0.0	0
49	Realistic models of Globular Clusters with white dwarfs, neutron stars and black holes using GPU supercomputer. Proceedings of the International Astronomical Union, 2019, 15, 206-210.	0.0	0
50	DYNAMICAL FRICTION IN CUSPIDAL GALAXIES., 2015, , .		0
51	The local effect of Dark Energy in galaxy clusters. , 2017, , .		O
52	Will a nuclear stellar disk form in the galaxy Henize 2-10?. , 2017, , .		O