
J Andrew Neuman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4304195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Why do models overestimate surface ozone in the Southeast United States?. Atmospheric Chemistry and Physics, 2016, 16, 13561-13577.	4.9	320
2	Surface and lightning sources of nitrogen oxides over the United States: Magnitudes, chemical evolution, and outflow. Journal of Geophysical Research, 2007, 112, .	3.3	279
3	Effect of petrochemical industrial emissions of reactive alkenes and NOxon tropospheric ozone formation in Houston, Texas. Journal of Geophysical Research, 2003, 108, .	3.3	263
4	Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas. Journal of Geophysical Research, 2009, 114, .	3.3	230
5	Effects of changing power plant NOxemissions on ozone in the eastern United States: Proof of concept. Journal of Geophysical Research, 2006, 111, .	3.3	226
6	Ozone production in transpacific Asian pollution plumes and implications for ozone air quality in California. Journal of Geophysical Research, 2004, 109, .	3.3	197
7	A large and ubiquitous source of atmospheric formic acid. Atmospheric Chemistry and Physics, 2015, 15, 6283-6304.	4.9	197
8	Study of Inlet Materials for Sampling Atmospheric Nitric Acid. Environmental Science & Technology, 1999, 33, 1133-1136.	10.0	165
9	Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2119-2139.	3.3	164
10	Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): application to biomass burning emissions. Atmospheric Measurement Techniques, 2010, 3, 981-990.	3.1	152
11	Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NO _x and CO ₂ and their impacts. Atmospheric Chemistry and Physics, 2013, 13, 3661-3677.	4.9	142
12	Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on reactive nitrogen partitioning and secondary organic aerosol. Atmospheric Chemistry and Physics, 2009, 9, 3027-3042.	4.9	128
13	Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	126
14	Reactive uptake coefficients for N ₂ O ₅ determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations. Journal of Geophysical Research, 2009, 114, .	3.3	124
15	Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4505-4510.	7.1	118
16	A new interpretation of total column BrO during Arctic spring. Geophysical Research Letters, 2010, 37,	4.0	116
17	Trends in ozone, its precursors, and related secondary oxidation products in Los Angeles, California: A synthesis of measurements from 1960 to 2010. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5893-5911.	3.3	115
18	Concentrations and sources of organic carbon aerosols in the free troposphere over North America. Journal of Geophysical Research, 2006, 111.	3.3	111

#	Article	IF	CITATIONS
19	Design and initial characterization of an inlet for gas-phase NOymeasurements from aircraft. Journal of Geophysical Research, 1999, 104, 5483-5492.	3.3	110
20	Ammonia sources in the California South Coast Air Basin and their impact on ammonium nitrate formation. Geophysical Research Letters, 2012, 39, .	4.0	110
21	Particle growth in urban and industrial plumes in Texas. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	109
22	Atmospheric emissions from the Deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	107
23	A chemical ionization mass spectrometry technique for airborne measurements of ammonia. Journal of Geophysical Research, 2007, 112, .	3.3	106
24	A comparison of Arctic BrO measurements by chemical ionization mass spectrometry and long path-differential optical absorption spectroscopy. Journal of Geophysical Research, 2011, 116, .	3.3	105
25	High levels of molecular chlorine in the Arctic atmosphere. Nature Geoscience, 2014, 7, 91-94.	12.9	105
26	An investigation of the chemistry of ship emission plumes during ITCT 2002. Journal of Geophysical Research, 2005, 110, .	3.3	103
27	Bromine measurements in ozone depleted air over the Arctic Ocean. Atmospheric Chemistry and Physics, 2010, 10, 6503-6514.	4.9	101
28	Airborne and groundâ€based observations of a weekend effect in ozone, precursors, and oxidation products in the California South Coast Air Basin. Journal of Geophysical Research, 2012, 117, .	3.3	97
29	Analysis of urban gas phase ammonia measurements from the 2002 Atlanta Aerosol Nucleation and Real-Time Characterization Experiment (ANARChE). Journal of Geophysical Research, 2006, 111, .	3.3	95
30	Fast-response airborne in situ measurements of HNO3during the Texas 2000 Air Quality Study. Journal of Geophysical Research, 2002, 107, ACH 8-1.	3.3	94
31	Airborne observations of ammonia and ammonium nitrate formation over Houston, Texas. Journal of Geophysical Research, 2010, 115, .	3.3	91
32	Towards validation of ammonia (NH ₃) measurements from the IASI satellite. Atmospheric Measurement Techniques, 2015, 8, 1575-1591.	3.1	90
33	Particle characteristics following cloud-modified transport from Asia to North America. Journal of Geophysical Research, 2004, 109, .	3.3	86
34	Variability in ammonium nitrate formation and nitric acid depletion with altitude and location over California. Journal of Geophysical Research, 2003, 108, .	3.3	84
35	Reactive nitrogen transport and photochemistry in urban plumes over the North Atlantic Ocean. Journal of Geophysical Research, 2006, 111, .	3.3	83
36	Gas-phase chemical characteristics of Asian emission plumes observed during ITCT 2K2 over the eastern North Pacific Ocean. Journal of Geophysical Research, 2004, 109, .	3.3	80

#	Article	IF	CITATIONS
37	Air quality implications of the <i>Deepwater Horizon</i> oil spill. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20280-20285.	7.1	79
38	Nocturnal odd-oxygen budget and its implications for ozone loss in the lower troposphere. Geophysical Research Letters, 2006, 33, .	4.0	75
39	Vertical profiles in NO ₃ and N ₂ O ₅ measured from an aircraft: Results from the NOAA Pâ€3 and surface platforms during the New England Air Quality Study 2004. Journal of Geophysical Research, 2007, 112, .	3.3	75
40	A case study of ozone production, nitrogen oxides, and the radical budget in Mexico City. Atmospheric Chemistry and Physics, 2009, 9, 2499-2516.	4.9	75
41	Quantifying Methane and Ethane Emissions to the Atmosphere From Central and Western U.S. Oil and Natural Gas Production Regions. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7725-7740.	3.3	74
42	Observations of inorganic bromine (HOBr, BrO, and Br ₂) speciation at Barrow, Alaska, in spring 2009. Journal of Geophysical Research, 2012, 117, .	3.3	71
43	An investigation of ammonia and inorganic particulate matter in California during the CalNex campaign. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1883-1902.	3.3	69
44	Measurement of peroxycarboxylic nitric anhydrides (PANs) during the ITCT 2K2 aircraft intensive experiment. Journal of Geophysical Research, 2004, 109, .	3.3	63
45	Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC. Atmospheric Chemistry and Physics, 2012, 12, 1255-1285.	4.9	63
46	On-road measurements of vehicle NO 2 /NO x emission ratios in Denver, Colorado, USA. Atmospheric Environment, 2017, 148, 182-189.	4.1	63
47	A comparison of observations and model simulations of NOx/NOyin the lower stratosphere. Geophysical Research Letters, 1999, 26, 1153-1156.	4.0	61
48	Dependence of daily peak O3 concentrations near Houston, Texas on environmental factors: Wind speed, temperature, and boundary-layer depth. Atmospheric Environment, 2011, 45, 162-173.	4.1	60
49	Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013. Atmospheric Measurement Techniques, 2016, 9, 3063-3093.	3.1	58
50	Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants. Atmospheric Chemistry and Physics, 2021, 21, 13973-13996.	4.9	57
51	Transition from high- to low-NOx control of night-time oxidation in the southeastern US. Nature Geoscience, 2017, 10, 490-495.	12.9	56
52	Evolution of aerosol properties impacting visibility and direct climate forcing in an ammoniaâ€rich urban environment. Journal of Geophysical Research, 2012, 117, .	3.3	54
53	Fine-scale simulation of ammonium and nitrate over the South Coast Air Basin and San Joaquin Valley of California during CalNex-2010. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3600-3614.	3.3	51
54	Modeling the weekly cycle of NO _x and CO emissions and their impacts on O ₃ in the Los Angelesâ€6outh Coast Air Basin during the CalNex 2010 field campaign. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1340-1360.	3.3	51

#	Article	IF	CITATIONS
55	Large contribution of biomass burning emissions to ozone throughout the global remote troposphere. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	51
56	Enhanced formation of isopreneâ€derived organic aerosol in sulfurâ€rich power plant plumes during Southeast Nexus. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,137.	3.3	50
57	Sources of particulate matter in the northeastern United States in summer: 2. Evolution of chemical and microphysical properties. Journal of Geophysical Research, 2008, 113, .	3.3	48
58	Lagrangian analysis of low altitude anthropogenic plume processing across the North Atlantic. Atmospheric Chemistry and Physics, 2008, 8, 7737-7754.	4.9	48
59	Characterization of Ammonia, Methane, and Nitrous Oxide Emissions from Concentrated Animal Feeding Operations in Northeastern Colorado. Environmental Science & Technology, 2016, 50, 10885-10893.	10.0	48
60	Interannual variability of ammonia concentrations over the United States: sources and implications. Atmospheric Chemistry and Physics, 2016, 16, 12305-12328.	4.9	48
61	Calibration and Evaluation of Nitric Acid and Ammonia Permeation Tubes by UV Optical Absorption. Environmental Science & Technology, 2003, 37, 2975-2981.	10.0	46
62	HONO emission and production determined from airborne measurements over the Southeast U.S Journal of Geophysical Research D: Atmospheres, 2016, 121, 9237-9250.	3.3	46
63	Ozone chemistry in western U.S. wildfire plumes. Science Advances, 2021, 7, eabl3648.	10.3	45
64	Mixing between a stratospheric intrusion and a biomass burning plume. Atmospheric Chemistry and Physics, 2007, 7, 4229-4235.	4.9	42
65	Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations. Atmospheric Chemistry and Physics, 2012, 12, 9909-9922.	4.9	42
66	The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere. Bulletin of the American Meteorological Society, 2022, 103, E761-E790.	3.3	39
67	Observations of ozone transport from the free troposphere to the Los Angeles basin. Journal of Geophysical Research, 2012, 117, .	3.3	38
68	Emissions of Glyoxal and Other Carbonyl Compounds from Agricultural Biomass Burning Plumes Sampled by Aircraft. Environmental Science & Technology, 2017, 51, 11761-11770.	10.0	38
69	Fraction and composition of NOytransported in air masses lofted from the North American continental boundary layer. Journal of Geophysical Research, 2004, 109, .	3.3	37
70	Comparison of modeled and observed values of NO2and JNO2during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) mission. Journal of Geophysical Research, 1999, 104, 26687-26703.	3.3	36
71	A fast-response chemical ionization mass spectrometer for in situ measurements of HNO[sub 3] in the upper troposphere and lower stratosphere. Review of Scientific Instruments, 2000, 71, 3886.	1.3	36
72	Relationship between photochemical ozone production and NO _x oxidation in Houston, Texas. Journal of Geophysical Research, 2009, 114, .	3.3	36

#	Article	IF	CITATIONS
73	Quantifying wet scavenging processes in aircraft observations of nitric acid and cloud condensation nuclei. Journal of Geophysical Research, 2006, 111, .	3.3	35
74	Observation and modeling of the evolution of Texas power plant plumes. Atmospheric Chemistry and Physics, 2012, 12, 455-468.	4.9	34
75	WRF-Chem simulation of NOx and O3 in the L.A. basin during CalNex-2010. Atmospheric Environment, 2013, 81, 421-432.	4.1	34
76	Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data. Atmospheric Chemistry and Physics, 2021, 21, 16293-16317.	4.9	34
77	On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America. Atmospheric Chemistry and Physics, 2019, 19, 9097-9123.	4.9	32
78	Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere. Communications Earth & Environment, 2021, 2, .	6.8	32
79	Validation of TES ammonia observations at the single pixel scale in the San Joaquin Valley during DISCOVERâ€AQ. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5140-5154.	3.3	31
80	Decadal changes in summertime reactive oxidized nitrogen and surface ozone over the Southeast United States. Atmospheric Chemistry and Physics, 2018, 18, 2341-2361.	4.9	30
81	Validation of IASI Satellite Ammonia Observations at the Pixel Scale Using In Situ Vertical Profiles. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033475.	3.3	28
82	Rapid cloud removal of dimethyl sulfide oxidation products limits SO ₂ and cloud condensation nuclei production in the marine atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	28
83	Characterization of soluble bromide measurements and a case study of BrO observations during ARCTAS. Atmospheric Chemistry and Physics, 2012, 12, 1327-1338.	4.9	27
84	Topâ€down estimate of methane emissions in California using a mesoscale inverse modeling technique: The San Joaquin Valley. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3686-3699.	3.3	26
85	Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ). Atmospheric Chemistry and Physics, 2021, 21, 18319-18331.	4.9	24
86	Exploring Oxidation in the Remote Free Troposphere: Insights From Atmospheric Tomography (ATom). Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031685.	3.3	23
87	Variability of Ammonia and Methane Emissions from Animal Feeding Operations in Northeastern Colorado. Environmental Science & Technology, 2020, 54, 11015-11024.	10.0	23
88	Nitric acid loss rates measured in power plant plumes. Journal of Geophysical Research, 2004, 109, .	3.3	22
89	Modeling ozone plumes observed downwind of New York City over the North Atlantic Ocean during the ICARTT field campaign. Atmospheric Chemistry and Physics, 2011, 11, 7375-7397.	4.9	22
90	Robust highâ€ŧemperature sapphire cell for metal vapors. Review of Scientific Instruments, 1995, 66, 3021-3023.	1.3	21

#	Article	IF	CITATIONS
91	Energy-pooling collisions in barium. Physical Review A, 1994, 50, 1292-1300.	2.5	20
92	Effects of NO _x control and plume mixing on nighttime chemical processing of plumes from coalâ€fired power plants. Journal of Geophysical Research, 2012, 117, .	3.3	20
93	Evaluation of the accuracy of thermal dissociation CRDS and LIF techniques for atmospheric measurement of reactive nitrogen species. Atmospheric Measurement Techniques, 2017, 10, 1911-1926.	3.1	18
94	Revised UV absorption spectra, ozone depletion potentials, and global warming potentials for the ozoneâ€depleting substances CF ₂ Br ₂ , CF ₂ ClBr, and CF ₂ BrCF ₂ Br. Geophysical Research Letters, 2013, 40, 464-469.	4.0	17
95	Ozone and alkyl nitrate formation from the Deepwater Horizon oil spill atmospheric emissions. Journal of Geophysical Research, 2012, 117, .	3.3	16
96	Changes in nitrogen oxides emissions in California during 2005–2010 indicated from topâ€down and bottomâ€up emission estimates. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,928.	3.3	16
97	Airborne measurements of the atmospheric emissions from a fuel ethanol refinery. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4385-4397.	3.3	16
98	Chemical Tomography in a Fresh Wildland Fire Plume: A Large Eddy Simulation (LES) Study. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035203.	3.3	16
99	Inorganic and black carbon aerosols in the Los Angeles Basin during CalNex. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1777-1803.	3.3	15
100	Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires. Environmental Science & Technology, 2022, 56, 7564-7577.	10.0	15
101	Modeling the diurnal variability of agricultural ammonia in Bakersfield, California, during the CalNex campaign. Atmospheric Chemistry and Physics, 2017, 17, 2721-2739.	4.9	14
102	AÂvacuum ultraviolet ion source (VUV-IS) for iodide–chemical ionization mass spectrometry: a substitute for radioactive ion sources. Atmospheric Measurement Techniques, 2020, 13, 3683-3696.	3.1	14
103	A portable, robust, stable, and tunable calibration source for gas-phase nitrous acid (HONO). Atmospheric Measurement Techniques, 2020, 13, 5873-5890.	3.1	14
104	The emission and chemistry of reactive nitrogen species in the plume of an Athena II solid-fuel rocket motor. Geophysical Research Letters, 2002, 29, 34-1-34-4.	4.0	13
105	HCOOH in the Remote Atmosphere: Constraints from Atmospheric Tomography (ATom) Airborne Observations. ACS Earth and Space Chemistry, 2021, 5, 1436-1454.	2.7	13
106	Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke. Environmental Science & Technology, 2021, 55, 15646-15657.	10.0	11
107	Computer-controlled Teflon flow control valve. Review of Scientific Instruments, 1999, 70, 4732-4733.	1.3	10
108	Hydrocarbon Removal in Power Plant Plumes Shows Nitrogen Oxide Dependence of Hydroxyl Radicals. Geophysical Research Letters, 2019, 46, 7752-7760.	4.0	9

#	Article	IF	CITATIONS
109	Modeling air quality in the San Joaquin valley of California during the 2013 Discover-AQ field campaign. Atmospheric Environment: X, 2020, 5, 100067.	1.4	9
110	Validation of a new cavity ring-down spectrometer for measuring tropospheric gaseous hydrogen chloride. Atmospheric Measurement Techniques, 2021, 14, 5859-5871.	3.1	7
111	A versatile vacuum ultraviolet ion source for reduced pressure bipolar chemical ionization mass spectrometry. Atmospheric Measurement Techniques, 2022, 15, 1159-1169.	3.1	7
112	Biomass burning in Siberia as a source of BrO to the Arctic free troposphere. Atmospheric Environment, 2012, 62, 416-423.	4.1	6
113	Velocity dependence of energy pooling collisions in strontium. Physical Review A, 1997, 56, 432-442.	2.5	5
114	JNO2at high solar zenith angles in the lower stratosphere. Geophysical Research Letters, 2001, 28, 2405-2408.	4.0	5
115	Effects of alignment on strontium energy pooling collisions. Physical Review A, 1998, 57, 2231-2234.	2.5	2
116	Meteorological Influences on Trace Gas Transport along the North Atlantic Coast during ICARTT 2004. Atmosphere, 2014, 5, 973-1001.	2.3	2