Stephane M Rombauts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4303894/publications.pdf

Version: 2024-02-01

92 papers 26,145 citations

52 h-index 43889 91 g-index

103 all docs

103 docs citations

103 times ranked 25182 citing authors

#	Article	IF	Citations
1	PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30, 325-327.	14.5	4,875
2	The Genome of Black Cottonwood, <i>Populus trichocarpa</i> (Torr. & Samp; Gray). Science, 2006, 313, 1596-1604.	12.6	3,945
3	The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012, 485, 635-641.	27.8	2,860
4	The <i>Physcomitrella</i> Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science, 2008, 319, 64-69.	12.6	1,712
5	The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 2011, 480, 520-524.	27.8	1,166
6	The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 2011, 479, 487-492.	27.8	897
7	Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11647-11652.	7.1	809
8	Green Evolution and Dynamic Adaptations Revealed by Genomes of the Marine Picoeukaryotes <i>Micromonas</i> . Science, 2009, 324, 268-272.	12.6	591
9	The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7705-7710.	7.1	563
10	Genome-Wide Analysis of Core Cell Cycle Genes in Arabidopsis. Plant Cell, 2002, 14, 903-916.	6.6	523
11	Genome-Wide Analysis of Hydrogen Peroxide-Regulated Gene Expression in Arabidopsis Reveals a High Light-Induced Transcriptional Cluster Involved in Anthocyanin Biosynthesis Â. Plant Physiology, 2005, 139, 806-821.	4.8	476
12	PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Research, 1999, 27, 295-296.	14.5	462
13	A Molecular Timetable for Apical Bud Formation and Dormancy Induction in Poplar. Plant Cell, 2007, 19, 2370-2390.	6.6	436
14	The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell, 2018, 174, 448-464.e24.	28.9	420
15	A link between host plant adaptation and pesticide resistance in the polyphagous spider mite <i>Tetranychus urticae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E113-22.	7.1	347
16	A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics, 2001, 17, 1113-1122.	4.1	344
17	A Gibbs Sampling Method to Detect Overrepresented Motifs in the Upstream Regions of Coexpressed Genes. Journal of Computational Biology, 2002, 9, 447-464.	1.6	301
18	Catalase deficiency drastically affects gene expression induced by high light inArabidopsis thaliana. Plant Journal, 2004, 39, 45-58.	5.7	298

#	Article	IF	Citations
19	CLE Peptides Control <i>Medicago truncatula</i> Nodulation Locally and Systemically Â. Plant Physiology, 2010, 153, 222-237.	4.8	293
20	Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14959-14964.	7.1	286
21	A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). Genomics Data, 2017, 14, 56-62.	1.3	248
22	Aging in Legume Symbiosis. A Molecular View on Nodule Senescence in Medicago truncatula Â. Plant Physiology, 2006, 141, 711-720.	4.8	214
23	Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics, 2013, 14, 498.	2.8	170
24	Functional Modules in the <i>Arabidopsis</i> Core Cell Cycle Binary Protein–Protein Interaction Network. Plant Cell, 2010, 22, 1264-1280.	6.6	168
25	Computational Approaches to Identify Promoters and cis-Regulatory Elements in Plant Genomes. Plant Physiology, 2003, 132, 1162-1176.	4.8	158
26	Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biology, 2012, 13, R74.	9.6	143
27	Transcriptome analysis during cell division in plants. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14825-14830.	7.1	140
28	Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp. BMC Biology, 2021, 19, 1.	3.8	135
29	Quantitative cDNA-AFLP analysis for genome-wide expression studies. Molecular Genetics and Genomics, 2003, 269, 173-179.	2.1	133
30	EST data suggest that poplar is an ancient polyploid. New Phytologist, 2005, 167, 165-170.	7.3	128
31	The metabolic blueprint of <i>Phaeodactylum tricornutum</i> reveals a eukaryotic Entner–Doudoroff glycolytic pathway. Plant Journal, 2012, 70, 1004-1014.	5.7	124
32	Genomeâ€scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5. Plant Journal, 2008, 56, 493-504.	5.7	120
33	CathaCyc, a Metabolic Pathway Database Built from Catharanthus roseus RNA-Seq Data. Plant and Cell Physiology, 2013, 54, 673-685.	3.1	116
34	How many genes are there in plants ($\hat{a} \in $ and why are they there)?. Current Opinion in Plant Biology, 2007, 10, 199-203.	7.1	115
35	Genomewide Structural Annotation and Evolutionary Analysis of the Type I MADS-Box Genes in Plants. Journal of Molecular Evolution, 2003, 56, 573-586.	1.8	109
36	The grapevine gene nomenclature system. BMC Genomics, 2014, 15, 1077.	2.8	108

#	Article	lF	Citations
37	Evaluation of gene prediction software using a genomic data set: application to <\$O_SSF>Arabidopsis thaliana<\$C_SSF>sequences. Bioinformatics, 1999, 15, 887-899.	4.1	104
38	Moss transcriptome and beyond. Trends in Plant Science, 2002, 7, 535-538.	8.8	102
39	Genome Annotation in Plants and Fungi: EuGene as a Model Platform. Current Bioinformatics, 2008, 3, 87-97.	1.5	102
40	In silico cloning of genes encoding neuropeptides, neurohormones and their putative G-protein coupled receptors in a spider mite. Insect Biochemistry and Molecular Biology, 2012, 42, 277-295.	2.7	93
41	Overview of tomato (<i>Solanum lycopersicum</i>) candidate pathogen recognition genes reveals important <i>Solanum</i>) R locus dynamics. New Phytologist, 2013, 197, 223-237.	7.3	90
42	An improved genome of the model marine alga Ostreococcus tauri unfolds by assessing Illumina de novo assemblies. BMC Genomics, 2014, 15, 1103.	2.8	90
43	Characterization of two distinct DP-related genes fromArabidopsis thaliana 1. FEBS Letters, 2000, 486, 79-87.	2.8	80
44	Starch Division and Partitioning. A Mechanism for Granule Propagation and Maintenance in the Picophytoplanktonic Green Alga Ostreococcus tauri. Plant Physiology, 2004, 136, 3333-3340.	4.8	80
45	Systematic Localization of the Arabidopsis Core Cell Cycle Proteins Reveals Novel Cell Division Complexes Â. Plant Physiology, 2010, 152, 553-565.	4.8	79
46	INCLUSive: INtegrated Clustering, Upstream sequence retrieval and motif Sampling. Bioinformatics, 2002, 18, 331-332.	4.1	78
47	Pseudo-chromosome–length genome assembly of a double haploid "Bartlett―pear (Pyrus communis L.). GigaScience, 2019, 8, .	6.4	76
48	Microarray analysis of E2Fa-DPa-overexpressing plants uncovers a cross-talking genetic network between DNA replication and nitrogen assimilation. Journal of Cell Science, 2003, 116, 4249-4259.	2.0	75
49	A Snapshot of the Emerging Tomato Genome Sequence. Plant Genome, 2009, 2, .	2.8	73
50	Analysis of RNA-Seq Data with TopHat and Cufflinks for Genome-Wide Expression Analysis of Jasmonate-Treated Plants and Plant Cultures. Methods in Molecular Biology, 2013, 1011, 305-315.	0.9	68
51	Jabba: hybrid error correction for long sequencing reads. Algorithms for Molecular Biology, 2016, 11, 10.	1.2	67
52	AGRONOMICS1: A New Resource for Arabidopsis Transcriptome Profiling Â. Plant Physiology, 2010, 152, 487-499.	4.8	61
53	Systematic analysis of cell•ycle gene expression during Arabidopsis development. Plant Journal, 2009, 59, 645-660.	5.7	58
54	Analysis of the Olive Fruit Fly Bactrocera oleae Transcriptome and Phylogenetic Classification of the Major Detoxification Gene Families. PLoS ONE, 2013, 8, e66533.	2.5	55

#	Article	IF	CITATIONS
55	Seven in Absentia Proteins Affect Plant Growth and Nodulation in <i>Medicago truncatula</i> ÂÂ. Plant Physiology, 2008, 148, 369-382.	4.8	52
56	Genome annotation: which tools do we have for it?. Current Opinion in Plant Biology, 1999, 2, 90-95.	7.1	45
57	AFLPinSilico, simulating AFLP fingerprints. Bioinformatics, 2003, 19, 776-777.	4.1	42
58	Complex Evolutionary Dynamics of Massively Expanded Chemosensory Receptor Families in an Extreme Generalist Chelicerate Herbivore. Genome Biology and Evolution, 2016, 8, 3323-3339.	2.5	42
59	Annotation of a 95-kb Populus deltoides genomic sequence reveals a disease resistance gene cluster and novel class I and class II transposable elements. Theoretical and Applied Genetics, 2004, 109, 10-22.	3.6	37
60	Genome Analyses of the Microalga Picochlorum Provide Insights into the Evolution of Thermotolerance in the Green Lineage. Genome Biology and Evolution, 2018, 10, 2347-2365.	2.5	36
61	Evidence for an ancient chromosomal duplication inArabidopsis thalianaby sequencing and analyzing a 400-kb contig at theAPETALA2locus on chromosome 41. FEBS Letters, 1999, 445, 237-245.	2.8	33
62	A Symbiotic Plant Peroxidase Involved in Bacterial Invasion of the Tropical Legume Sesbania rostrata Â. Plant Physiology, 2007, 144, 717-727.	4.8	33
63	Genome streamlining in a minute herbivore that manipulates its host plant. ELife, 2020, 9, .	6.0	33
64	Identification of salt stress response genes using the Artemia transcriptome. Aquaculture, 2019, 500, 305-314.	3.5	31
65	Identification of novel cyclinâ€dependent kinases interacting with the CKS1 protein of Arabidopsis1. Journal of Experimental Botany, 2001, 52, 1381-1382.	4.8	30
66	Search for nodulation-related CLE genes in the genome of Glycine max. Journal of Experimental Botany, 2011, 62, 2571-2583.	4.8	30
67	Virus-host coexistence in phytoplankton through the genomic lens. Science Advances, 2020, 6, eaay2587.	10.3	30
68	Draft Genome Assembly of the Poultry Red Mite, <i>Dermanyssus gallinae</i> . Microbiology Resource Announcements, 2018, 7, .	0.6	26
69	The â€TranSeq' 3′â€end sequencing method for highâ€throughput transcriptomics and gene space refine in plant genomes. Plant Journal, 2018, 96, 223-232.	ment 5.7	23
70	A Gibbs sampling method to detect over-represented motifs in the upstream regions of co-expressed genes. , 2001 , , .		22
71	The genome of the extremophile Artemia provides insight into strategies to cope with extreme environments. BMC Genomics, 2021, 22, 635.	2.8	20
72	Comparative Time-Scale Gene Expression Analysis Highlights the Infection Processes of Two Amoebophrya Strains. Frontiers in Microbiology, 2018, 9, 2251.	3.5	19

#	Article	IF	CITATIONS
73	The genome of $\langle i \rangle$ Corydalis $\langle j i \rangle$ reveals the evolution of benzylisoquinoline alkaloid biosynthesis in Ranunculales. Plant Journal, 2022, 111, 217-230.	5.7	19
74	Comparative Transcriptome Analysis Reveals Common and Specific Tags for Root Hair and Crack-Entry Invasion in Sesbania rostrata Â. Plant Physiology, 2007, 144, 1878-1889.	4.8	18
75	The absence of the caffeine synthase gene is involved in the naturally decaffeinated status of Coffea humblotiana, a wild species from Comoro archipelago. Scientific Reports, 2021, 11, 8119.	3.3	17
76	GeneFarm, structural and functional annotation of Arabidopsis gene and protein families by a network of experts. Nucleic Acids Research, 2004, 33, D641-D646.	14.5	16
77	Draft Genome Assembly of the Sheep Scab Mite, Psoroptes ovis. Genome Announcements, 2018, 6, .	0.8	15
78	OMSim: a simulator for optical map data. Bioinformatics, 2017, 33, 2740-2742.	4.1	14
79	A genomic analysis and transcriptomic atlas of gene expression in Psoroptes ovis reveals feeding- and stage-specific patterns of allergen expression. BMC Genomics, 2019, 20, 756.	2.8	14
80	Gene prediction and gene classes in Arabidopsis thaliana. Journal of Biotechnology, 2000, 78, 293-299.	3.8	13
81	†Nebbiolo' genome assembly allows surveying the occurrence and functional implications of genomic structural variations in grapevines (Vitis vinifera L.). BMC Genomics, 2022, 23, 159.	2.8	11
82	Dietary shifts have consequences for the repertoire of allergens produced by the European house dust mite. Medical and Veterinary Entomology, 2017, 31, 272-280.	1.5	9
83	Transcriptomic analysis of the poultry red mite, Dermanyssus gallinae, across all stages of the lifecycle. BMC Genomics, 2021, 22, 248.	2.8	9
84	Genomic evidence that a sexually selected trait captures genome-wide variation and facilitates the purging of genetic load. Nature Ecology and Evolution, 2022, 6, 1330-1342.	7.8	8
85	Draft Genome Assembly of the False Spider Mite Brevipalpus yothersi. Microbiology Resource Announcements, 2019, 8, .	0.6	6
86	Flemish soils contain rhizobia partners for Northwestern Europeâ€adapted soybean cultivars. Environmental Microbiology, 2022, 24, 3334-3354.	3.8	6
87	De novo whole-genome assembly and discovery of genes involved in triterpenoid saponin biosynthesis of Vietnamese ginseng (Panax vietnamensis Ha et Grushv.). Physiology and Molecular Biology of Plants, 2021, 27, 2215-2229.	3.1	3
88	Draft Genome Sequences of Two Unclassified Bacteria, Sphingomonas sp. Strains IBVSS1 and IBVSS2, Isolated from Environmental Samples. Genome Announcements, 2017, 5, .	0.8	1
89	Draft Genome Sequences of Two Unclassified Chitinophagaceae Bacteria, IBVUCB1 and IBVUCB2, Isolated from Environmental Samples. Genome Announcements, 2017, 5, .	0.8	1
90	RNA viruses in the house dust mite Dermatophagoides pteronyssinus, detection in environmental samples and in commercial allergen extracts used for in vivo diagnosis. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3743-3754.	5.7	1

#	Article	IF	CITATIONS
91	Annotation of the Tomato Genome. Compendium of Plant Genomes, 2016, , 159-171.	0.5	O
92	Draft Genome Sequences of Two Unclassified Bacteria, Hydrogenophaga sp. Strains IBVHS1 and IBVHS2, Isolated from Environmental Samples. Genome Announcements, 2017, 5, .	0.8	0