
Ainhoa Martinez-Medina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4302/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mycorrhiza-Induced Resistance and Priming of Plant Defenses. Journal of Chemical Ecology, 2012, 38, 651-664.	1.8	757
2	Recognizing Plant Defense Priming. Trends in Plant Science, 2016, 21, 818-822.	8.8	549
3	Shifting from priming of salicylic acid―to jasmonic acid―egulated defences by <i>Trichoderma</i> protects tomato against the root knot nematode <i>Meloidogyne incognita</i> . New Phytologist, 2017, 213, 1363-1377.	7.3	275
4	Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Frontiers in Plant Science, 2013, 4, 206.	3.6	199
5	Induced Systemic Resistance (ISR) and Fe Deficiency Responses in Dicot Plants. Frontiers in Plant Science, 2019, 10, 287.	3.6	176
6	Phytohormone Profiles Induced by Trichoderma Isolates Correspond with Their Biocontrol and Plant Growth-Promoting Activity on Melon Plants. Journal of Chemical Ecology, 2014, 40, 804-815.	1.8	171
7	Airborne signals from <i>Trichoderma</i> fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acidâ€dependent defences in shoots of <scp><i>Arabidopsis thaliana</i></scp> and <scp><i>Solanum lycopersicum</i></scp> . Plant, Cell and Environment, 2017, 40, 2691-2705.	5.7	153
8	The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry, 2011, 72, 223-229.	2.9	90
9	Defense Related Phytohormones Regulation in Arbuscular Mycorrhizal Symbioses Depends on the Partner Genotypes. Journal of Chemical Ecology, 2014, 40, 791-803.	1.8	78
10	Interactions between arbuscular mycorrhizal fungi and <i>Trichoderma harzianum</i> and their effects on Fusarium wilt in melon plants grown in seedling nurseries. Journal of the Science of Food and Agriculture, 2009, 89, 1843-1850.	3.5	66
11	Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops: Growth response and Fusarium wilt biocontrol. Applied Soil Ecology, 2011, 47, 98-105.	4.3	66
12	Untapping the potential of plant mycobiomes for applications in agriculture. Current Opinion in Plant Biology, 2021, 60, 102034.	7.1	56
13	<i>Trichoderma harzianum</i> and <i>Glomus intraradices</i> Modify the Hormone Disruption Induced by <i>Fusarium oxysporum</i> Infection in Melon Plants. Phytopathology, 2010, 100, 682-688.	2.2	54
14	Growing Research Networks on Mycorrhizae for Mutual Benefits. Trends in Plant Science, 2018, 23, 975-984.	8.8	51
15	Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by <i>Trichoderma harzianum</i> T-78. Plant Signaling and Behavior, 2017, 12, e1345404.	2.4	47
16	Nitric oxide in plant–fungal interactions. Journal of Experimental Botany, 2019, 70, 4489-4503.	4.8	42
17	Nitric oxide and phytoglobin PHYTOGB1 are regulatory elements in the <i>Solanum lycopersicum</i> – <i>Rhizophagus irregularis</i> mycorrhizal symbiosis. New Phytologist, 2019, 223, 1560-1574.	7.3	39
18	Effective approaches to study the plant-root knot nematode interaction. Plant Physiology and Biochemistry, 2019, 141, 332-342.	5.8	32

#	Article	IF	CITATIONS
19	Performance of a Trichoderma harzianum Bentonite–vermiculite Formulation Against Fusarium Wilt in Seedling Nursery Melon Plants. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 2025-2027.	1.0	32
20	Ménage à Trois: Unraveling the Mechanisms Regulating Plant–Microbe–Arthropod Interactions. Trends in Plant Science, 2020, 25, 1215-1226.	8.8	31
21	Root Allies: Arbuscular Mycorrhizal Fungi Help Plants to Cope with Biotic Stresses. Soil Biology, 2013, , 289-307.	0.8	28
22	The Lipoxygenase Lox1 Is Involved in Light―and Injury-Response, Conidiation, and Volatile Organic Compound Biosynthesis in the Mycoparasitic Fungus Trichoderma atroviride. Frontiers in Microbiology, 2020, 11, 2004.	3.5	26
23	Nitric oxide signalling in roots is required for MYB72-dependent systemic resistance induced by <i>Trichoderma</i> volatile compounds in Arabidopsis. Journal of Experimental Botany, 2022, 73, 584-595.	4.8	21
24	Evaluation of the removal of pathogens included in the Proposal for a European Directive on spreading of sludge on land during autothermal thermophilic aerobic digestion (ATAD). Chemical Engineering Journal, 2012, 198-199, 171-179.	12.7	20
25	Belowground Defence Strategies in Plants: The Plant–Trichoderma Dialogue. Signaling and Communication in Plants, 2016, , 301-327.	0.7	19
26	Defence signalling marker gene responses to hormonal elicitation differ between roots and shoots. AoB PLANTS, 2018, 10, ply031.	2.3	16
27	The impact of Spodoptera exigua herbivory on Meloidogyne incognita-induced root responses depends on the nematodes' life cycle stages. AoB PLANTS, 2020, 12, plaa029.	2.3	13
28	Cascading Effects of Root Microbial Symbiosis on the Development and Metabolome of the Insect Herbivore Manduca sexta L Metabolites, 2021, 11, 731.	2.9	13
29	Interactions between functionally diverse fungal mutualists inconsistently affect plant performance and competition. Oikos, 2019, 128, 1136-1146.	2.7	10
30	Induced Local and Systemic Defense Responses in Tomato Underlying Interactions Between the Root-Knot Nematode Meloidogyne incognita and the Potato Aphid Macrosiphum euphorbiae. Frontiers in Plant Science, 2021, 12, 632212.	3.6	10
31	Leaf herbivory counteracts nematode-triggered repression of jasmonate-related defenses in tomato roots. Plant Physiology, 2021, 187, 1762-1778.	4.8	9
32	Coming to Common Ground: The Challenges of Applying Ecological Theory Developed Aboveground to Rhizosphere Interactions. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	7
33	Nutrient status not secondary metabolites drives herbivory and pathogen infestation across differently mycorrhized tree monocultures and mixtures. Basic and Applied Ecology, 2021, 55, 110-123.	2.7	7
34	<i>Trichoderma harzianum</i> triggers an early and transient burst of nitric oxide and the upregulation of <i>PHYTOGB1</i> in tomato roots. Plant Signaling and Behavior, 2019, 14, 1640564.	2.4	6
35	Root infection by the nematode <i>Meloidogyne incognita</i> modulates leaf antiherbivore defenses and plant resistance to <i>Spodoptera exigua</i> . Journal of Experimental Botany, 2021, 72, 7909-7926.	4.8	6
36	Biostimulant and suppressive effect of <i>Trichoderma harzianum</i> enriched compost for melon cultivation from greenhouse nursery to field production. Acta Horticulturae, 2017, , 225-232.	0.2	4

#	Article	IF	CITATIONS
37	Editorial: As Above So Below? Progress in Understanding the Role of Belowground Interactions in Ecological Processes. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	0