
Regina Feederle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4301931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MS4A15 drives ferroptosis resistance through calcium-restricted lipid remodeling. Cell Death and Differentiation, 2022, 29, 670-686.	11.2	35
2	Normality sensing licenses local T cells for innate-like tissue surveillance. Nature Immunology, 2022, 23, 411-422.	14.5	30
3	A Novel Anti-CD73 Antibody That Selectively Inhibits Membrane CD73 Shows Antitumor Activity and Induces Tumor Immune Escape. Biomedicines, 2022, 10, 825.	3.2	4
4	Sirtuin-1 sensitive lysine-136 acetylation drives phase separation and pathological aggregation of TDP-43. Nature Communications, 2022, 13, 1223.	12.8	29
5	Phosphorylation of serine-893 in CARD11 suppresses the formation and activity of the CARD11-BCL10-MALT1 complex in T and B cells. Science Signaling, 2022, 15, eabk3083.	3.6	3
6	Soluble TREM2 in CSF and its association with other biomarkers and cognition in autosomal-dominant Alzheimer's disease: a longitudinal observational study. Lancet Neurology, The, 2022, 21, 329-341.	10.2	72
7	FK506-Binding Protein 11 Is a Novel Plasma Cell-Specific Antibody Folding Catalyst with Increased Expression in Idiopathic Pulmonary Fibrosis. Cells, 2022, 11, 1341.	4.1	12
8	Active site geometry stabilization of a presenilin homolog by the lipid bilayer promotes intramembrane proteolysis. ELife, 2022, 11, .	6.0	3
9	Spatial centrosome proteome of human neural cells uncovers disease-relevant heterogeneity. Science, 2022, 376, .	12.6	25
10	A reporter cell system for the triggering receptor expressed on myeloid cells 2 reveals differential effects of diseaseâ€associated variants on receptor signaling and activation by antibodies against the stalk region. Glia, 2021, 69, 1126-1139.	4.9	5
11	Inceptor counteracts insulin signalling in β-cells to control glycaemia. Nature, 2021, 590, 326-331.	27.8	55
12	Chemokine-like MDL proteins modulate flowering time and innate immunity in plants. Journal of Biological Chemistry, 2021, 296, 100611.	3.4	10
13	Cryptochrome 1a localisation in light- and dark-adapted retinae of several migratory and non-migratory bird species: no signs of light-dependent activation. Ethology Ecology and Evolution, 2021, 33, 248-272.	1.4	30
14	PRMT1 promotes the tumor suppressor function of p14 ^{ARF} and is indicative for pancreatic cancer prognosis. EMBO Journal, 2021, 40, e106777.	7.8	23
15	Defining the RBPome of primary T helper cells to elucidate higher-order Roquin-mediated mRNA regulation. Nature Communications, 2021, 12, 5208.	12.8	23
16	A ubiquitin switch controls autocatalytic inactivation of the DNA–protein crosslink repair protease SPRTN. Nucleic Acids Research, 2021, 49, 902-915.	14.5	20
17	Localisation of cryptochrome 2 in the avian retina. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2021, 208, 69.	1.6	11
18	Balancing of mitochondrial translation through METTL8-mediated m3C modification of mitochondrial tRNAs. Molecular Cell, 2021, 81, 4810-4825.e12.	9.7	44

#	Article	IF	CITATIONS
19	Mouse brain proteomics establishes MDGA1 and CACHD1 as in vivo substrates of the Alzheimer protease BACE1. FASEB Journal, 2020, 34, 2465-2482.	0.5	16
20	Active polyâ€GA vaccination prevents microglia activation and motor deficits in a <i>C9orf72</i> mouse model. EMBO Molecular Medicine, 2020, 12, e10919.	6.9	39
21	Validation strategies for antibodies targeting modified ribonucleotides. Rna, 2020, 26, 1489-1506.	3.5	18
22	Oligodendrocyte myelin glycoprotein as a novel target for pathogenic autoimmunity in the CNS. Acta Neuropathologica Communications, 2020, 8, 207.	5.2	11
23	Butyrophilin-like proteins display combinatorial diversity in selecting and maintaining signature intraepithelial Î ³ δT cell compartments. Nature Communications, 2020, 11, 3769.	12.8	44
24	Aβ43â€producing <scp>PS</scp> 1 <scp>FAD</scp> mutants cause altered substrate interactions and respond to γâ€secretase modulation. EMBO Reports, 2020, 21, e47996.	4.5	24
25	Medin aggregation causes cerebrovascular dysfunction in aging wild-type mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23925-23931.	7.1	20
26	Loss of the cystine/glutamate antiporter in melanoma abrogates tumor metastasis and markedly increases survival rates of mice. International Journal of Cancer, 2020, 147, 3224-3235.	5.1	39
27	Novel antibody against lowâ€n oligomers of tau protein promotes clearance of tau in cells via lysosomes. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12097.	3.7	10
28	A family of hyperpolarization-activated channels selective for protons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13783-13791.	7.1	10
29	Spt6 is a maintenance factor for centromeric CENP-A. Nature Communications, 2020, 11, 2919.	12.8	30
30	Enhancing protective microglial activities with a dual function <scp>TREM</scp> 2 antibody to the stalk region. EMBO Molecular Medicine, 2020, 12, e11227.	6.9	155
31	ADAM17 stabilizes its interacting partner inactive Rhomboid 2 (iRhom2) but not inactive Rhomboid 1 (iRhom1). Journal of Biological Chemistry, 2020, 295, 4350-4358.	3.4	12
32	Aβ-induced acceleration of Alzheimer-related τ-pathology spreading and its association with prion protein. Acta Neuropathologica, 2019, 138, 913-941.	7.7	75
33	MALT1 Phosphorylation Controls Activation of T Lymphocytes and Survival of ABC-DLBCL Tumor Cells. Cell Reports, 2019, 29, 873-888.e10.	6.4	22
34	The Cdk8/19-cyclin C transcription regulator functions in genome replication through metazoan Sld7. PLoS Biology, 2019, 17, e2006767.	5.6	32
35	The highly GABARAP specific rat monoclonal antibody 8H5 visualizes GABARAP in immunofluorescence imaging at endogenous levels. Scientific Reports, 2019, 9, 526.	3.3	8
36	Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. Journal of Experimental Medicine, 2019, 216, 1700-1723.	8.5	29

#	Article	IF	CITATIONS
37	Pathological ASXL1 Mutations and Protein Variants Impair Neural Crest Development. Stem Cell Reports, 2019, 12, 861-868.	4.8	16
38	Signal peptide peptidaseâ€like 2c impairs vesicular transport and cleaves SNARE proteins. EMBO Reports, 2019, 20, .	4.5	22
39	The centrosome protein AKNA regulates neurogenesis via microtubule organization. Nature, 2019, 567, 113-117.	27.8	67
40	Determination of enrichment factors for modified RNA in MeRIP experiments. Methods, 2019, 156, 102-109.	3.8	12
41	Nonâ€cellâ€autonomous function of DR6 in Schwann cell proliferation. EMBO Journal, 2018, 37, .	7.8	14
42	Interactions, localization, and phosphorylation of the m ⁶ A generating METTL3–METTL14–WTAP complex. Rna, 2018, 24, 499-512.	3.5	312
43	Binding of NUFIP2 to Roquin promotes recognition and regulation of ICOS mRNA. Nature Communications, 2018, 9, 299.	12.8	27
44	Double-Cone Localization and Seasonal Expression Pattern Suggest a Role in Magnetoreception for European Robin Cryptochrome 4. Current Biology, 2018, 28, 211-223.e4.	3.9	134
45	Nucleolar-nucleoplasmic shuttling of TARG1 and its control by DNA damage-induced poly-ADP-ribosylation and by nucleolar transcription. Scientific Reports, 2018, 8, 6748.	3.3	32
46	Click Chemistry-mediated Biotinylation Reveals a Function for the Protease BACE1 in Modulating the Neuronal Surface Glycoproteome. Molecular and Cellular Proteomics, 2018, 17, 1487-1501.	3.8	33
47	Plk1/Polo Phosphorylates Sas-4 at the Onset of Mitosis for an Efficient Recruitment of Pericentriolar Material to Centrosomes. Cell Reports, 2018, 25, 3618-3630.e6.	6.4	23
48	Genomic Location of PRMT6-Dependent H3R2 Methylation Is Linked to the Transcriptional Outcome of Associated Genes. Cell Reports, 2018, 24, 3339-3352.	6.4	38
49	Novel antibodies reveal presynaptic localization of C9orf72 protein and reduced protein levels in C9orf72 mutation carriers. Acta Neuropathologica Communications, 2018, 6, 72.	5.2	87
50	Myb-like, SWIRM, and MPN domains 1 (MYSM1) deficiency: Genotoxic stress-associated bone marrow failure and developmental aberrations. Journal of Allergy and Clinical Immunology, 2017, 140, 1112-1119.	2.9	40
51	Antibodies specific for nucleic acid modifications. RNA Biology, 2017, 14, 1089-1098.	3.1	29
52	Epstein–Barr virus particles induce centrosome amplification and chromosomal instability. Nature Communications, 2017, 8, 14257.	12.8	68
53	Polyâ€ <scp>GP</scp> in cerebrospinal fluid links <i>C9orf72</i> â€associated dipeptide repeat expression to the asymptomatic phase of <scp>ALS</scp> / <scp>FTD</scp> . EMBO Molecular Medicine, 2017, 9, 859-868.	6.9	90
54	The <scp>FTD</scp> â€like syndrome causing <scp>TREM</scp> 2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism. EMBO Journal, 2017, 36, 1837-1853.	7.8	152

#	Article	IF	CITATIONS
55	Antibodies inhibit transmission and aggregation of <i>C9orf72</i> poly― <scp>GA</scp> dipeptide repeat proteins. EMBO Molecular Medicine, 2017, 9, 687-702.	6.9	70
56	T cell specific Cxcr5Âdeficiency prevents rheumatoid arthritis. Scientific Reports, 2017, 7, 8933.	3.3	53
57	An Alzheimerâ€associated TREM2 variant occurs at the <scp>ADAM</scp> cleavage site and affects shedding and phagocytic function. EMBO Molecular Medicine, 2017, 9, 1356-1365.	6.9	164
58	Antibodies against the mono-methylated arginine-glycine repeat (MMA-RG) of the Epstein–Barr virus nuclear antigen 2 (EBNA2) identify potential cellular proteins targeted in viral transformation. Journal of General Virology, 2017, 98, 2128-2142.	2.9	8
59	The biological properties of different Epstein-Barr virus strains explain their association with various types of cancers. Oncotarget, 2017, 8, 10238-10254.	1.8	60
60	Immunological Characterization of Intraocular Lymphoid Follicles in a Spontaneous Recurrent Uveitis Model. , 2016, 57, 4504.		22
61	Seizure protein 6 and its homolog seizure 6-like protein are physiological substrates of BACE1 in neurons. Molecular Neurodegeneration, 2016, 11, 67.	10.8	90
62	TREM2 deficiency reduces the efficacy of immunotherapeutic amyloid clearance. EMBO Molecular Medicine, 2016, 8, 992-1004.	6.9	144
63	Generation of Pax1/PAX1-Specific Monoclonal Antibodies. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2016, 35, 259-262.	1.6	10
64	The expression of a viral microRNA is regulated by clustering to allow optimal B cell transformation. Nucleic Acids Research, 2016, 44, 1326-1341.	14.5	24
65	A Viral microRNA Cluster Regulates the Expression of PTEN, p27 and of a bcl-2 Homolog. PLoS Pathogens, 2016, 12, e1005405.	4.7	43
66	Antigen-armed antibodies targeting B lymphoma cells effectively activate antigen-specific CD4+ T cells. Blood, 2015, 125, 1601-1610.	1.4	15
67	KIT Mutation and Loss of 14q May Be Sufficient for the Development of Clinically Symptomatic Very Low-Risk GIST. PLoS ONE, 2015, 10, e0130149.	2.5	6
68	The Epstein-Barr Virus BART miRNA Cluster of the M81 Strain Modulates Multiple Functions in Primary B Cells. PLoS Pathogens, 2015, 11, e1005344.	4.7	51
69	Epstein–Barr Virus: From the Detection of Sequence Polymorphisms to the Recognition of Viral Types. Current Topics in Microbiology and Immunology, 2015, 390, 119-148.	1.1	27
70	Genetics of Epstein–Barr virus microRNAs. Seminars in Cancer Biology, 2014, 26, 52-59.	9.6	87
71	Spontaneous Lytic Replication and Epitheliotropism Define an Epstein-Barr Virus Strain Found in Carcinomas. Cell Reports, 2013, 5, 458-470.	6.4	177
72	Human Natural Killer Cells Prevent Infectious Mononucleosis Features by Targeting Lytic Epstein-Barr Virus Infection. Cell Reports, 2013, 5, 1489-1498.	6.4	196

#	Article	IF	CITATIONS
73	An Epstein-Barr Virus Mutant Produces Immunogenic Defective Particles Devoid of Viral DNA. Journal of Virology, 2013, 87, 2011-2022.	3.4	41
74	The Viral and Cellular MicroRNA Targetome in Lymphoblastoid Cell Lines. PLoS Pathogens, 2012, 8, e1002484.	4.7	321
75	Epstein-Barr Virus Infection of NaÃ⁻ve B Cells In Vitro Frequently Selects Clones with Mutated Immunoglobulin Genotypes: Implications for Virus Biology. PLoS Pathogens, 2012, 8, e1002697.	4.7	61
76	The Epstein-Barr Virus-Encoded BILF1 Protein Modulates Immune Recognition of Endogenously Processed Antigen by Targeting Major Histocompatibility Complex Class I Molecules Trafficking on both the Exocytic and Endocytic Pathways. Journal of Virology, 2011, 85, 1604-1614.	3.4	74
77	The Members of an Epstein-Barr Virus MicroRNA Cluster Cooperate To Transform B Lymphocytes. Journal of Virology, 2011, 85, 9801-9810.	3.4	91
78	A Viral microRNA Cluster Strongly Potentiates the Transforming Properties of a Human Herpesvirus. PLoS Pathogens, 2011, 7, e1001294.	4.7	132
79	Epstein-Barr virus genetics: talking about the BAC generation. Herpesviridae, 2010, 1, 6.	2.7	33
80	Epstein-Barr Viruses That Express a CD21 Antibody Provide Evidence that gp350's Functions Extend beyond B-Cell Surface Binding. Journal of Virology, 2010, 84, 1139-1147.	3.4	17
81	The Epstein-Barr Virus Protein Kinase BGLF4 and the Exonuclease BGLF5 Have Opposite Effects on the Regulation of Viral Protein Production. Journal of Virology, 2009, 83, 10877-10891.	3.4	37
82	Oncolytic Rat Parvovirus H-1PV, a Candidate for the Treatment of Human Lymphoma: In Vitro and In Vivo Studies. Molecular Therapy, 2009, 17, 1164-1172.	8.2	44
83	Primary B-Cell Infection with a ΔBALF4 Epstein-Barr Virus Comes to a Halt in the Endosomal Compartment yet Still Elicits a Potent CD4-Positive Cytotoxic T-Cell Response. Journal of Virology, 2009, 83, 4616-4623.	3.4	13
84	Expression and Processing of a Small Nucleolar RNA from the Epstein-Barr Virus Genome. PLoS Pathogens, 2009, 5, e1000547.	4.7	84
85	Contribution of viral recombinants to the study of the immune response against the Epstein-Barr virus. Seminars in Cancer Biology, 2008, 18, 409-415.	9.6	10
86	Standardized and Highly Efficient Expansion of Epstein-Barr Virus-Specific CD4 ⁺ T Cells by Using Virus-Like Particles. Journal of Virology, 2008, 82, 3903-3911.	3.4	28
87	Deletion of Epstein-Barr Virus BFLF2 Leads to Impaired Viral DNA Packaging and Primary Egress as Well as to the Production of Defective Viral Particles. Journal of Virology, 2008, 82, 4042-4051.	3.4	74
88	Epstein-Barr virus B95.8 produced in 293 cells shows marked tropism for differentiated primary epithelial cells and reveals interindividual variation in susceptibility to viral infection. International Journal of Cancer, 2007, 121, 588-594.	5.1	61
89	BFRF1 of Epstein-Barr Virus Is Essential for Efficient Primary Viral Envelopment and Egress. Journal of Virology, 2005, 79, 3703-3712.	3.4	102
90	Epstein–Barr virus-induced B-cell transformation: quantitating events from virus binding to cell outgrowth. Journal of General Virology, 2005, 86, 3009-3019.	2.9	61

#	Article	IF	CITATIONS
91	Characterization and Intracellular Localization of the Epstein-Barr Virus Protein BFLF2: Interactions with BFRF1 and with the Nuclear Lamina. Journal of Virology, 2005, 79, 3713-3727.	3.4	113
92	Efficient somatic gene targeting in the lymphoid human cell line DG75. Gene, 2004, 343, 91-97.	2.2	14
93	The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proceedings of the United States of America, 2003, 100, 10989-10994.	7.1	179