Paul F Harrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4301431/publications.pdf

Version: 2024-02-01

40 papers 3,260 citations

257450 24 h-index 289244 40 g-index

44 all docs

44 docs citations

44 times ranked 4871 citing authors

#	Article	IF	CITATIONS
1	Disruption of Iron Homeostasis and Mitochondrial Metabolism Are Promising Targets to Inhibit Candida auris. Microbiology Spectrum, 2022, 10, e0010022.	3.0	9
2	The Detection and Bioinformatic Analysis of Alternative $3\hat{a} \in 2$ UTR Isoforms as Potential Cancer Biomarkers. International Journal of Molecular Sciences, 2021, 22, 5322.	4.1	5
3	Genetic and pharmacological evidence for kinetic competition between alternative poly(A) sites in yeast. ELife, $2021,10,$.	6.0	5
4	CDK13 cooperates with CDK12 to control global RNA polymerase II processivity. Science Advances, 2020, 6, .	10.3	79
5	The YEATS Domain Histone Crotonylation Readers Control Virulence-Related Biology of a Major Human Pathogen. Cell Reports, 2020, 31, 107528.	6.4	19
6	FGF13 promotes metastasis of tripleâ€negative breast cancer. International Journal of Cancer, 2020, 147, 230-243.	5.1	24
7	Requirement for cleavage factor II _m in the control of alternative polyadenylation in breast cancer cells. Rna, 2020, 26, 969-981.	3.5	18
8	Topconfects: a package for confident effect sizes in differential expression analysis provides a more biologically useful ranked gene list. Genome Biology, 2019, 20, 67.	8.8	43
9	PAT-Seq: A Method for Simultaneous Quantitation of Gene Expression, Poly(A)-Site Selection and Poly(A)-Length Distribution in Yeast Transcriptomes. Methods in Molecular Biology, 2019, 2049, 141-164.	0.9	5
10	Concurrent Host-Pathogen Transcriptional Responses in a $\mbox{\ensuremath{\mbox{\tiny L}}}\mbox{\ensuremath{\mbox{\tiny L}}}\e$	4.1	38
11	Functional and genomic characterization of a xenograft model system for the study of metastasis in triple-negative breast cancer. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	23
12	Glucose Homeostasis Is Important for Immune Cell Viability during Candida Challenge and Host Survival of Systemic Fungal Infection. Cell Metabolism, 2018, 27, 988-1006.e7.	16.2	162
13	αβ Tâ€eell receptors with a central <scp>CDR</scp> 3 cysteine are enriched in <scp>CD</scp> 8αα intraepithelial lymphocytes and their thymic precursors. Immunology and Cell Biology, 2018, 96, 553-561.	2.3	30
14	Coordination of Cell Cycle Progression and Mitotic Spindle Assembly Involves Histone H3 Lysine 4 Methylation by Set1/COMPASS. Genetics, 2017, 205, 185-199.	2.9	28
15	piRNAs and Aubergine cooperate with Wispy poly(A) polymerase to stabilize mRNAs in the germ plasm. Nature Communications, 2017, 8, 1305.	12.8	49
16	RNA-seq analysis of virR and revR mutants of Clostridium perfringens. BMC Genomics, 2016, 17, 391.	2.8	9
17	Perturbation of the two-component signal transduction system, BprRS, results in attenuated virulence and motility defects in Burkholderia pseudomallei. BMC Genomics, 2016, 17, 331.	2.8	19
18	The RNA-Binding Chaperone Hfq Is an Important Global Regulator of Gene Expression in Pasteurella multocida and Plays a Crucial Role in Production of a Number of Virulence Factors, Including Hyaluronic Acid Capsule. Infection and Immunity, 2016, 84, 1361-1370.	2.2	40

#	Article	IF	CITATIONS
19	Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans. PLoS Genetics, 2015, 11, e1005590.	3.5	31
20	PAT-seq: a method to study the integration of $3\hat{a}\in^2$ -UTR dynamics with gene expression in the eukaryotic transcriptome. Rna, 2015, 21, 1502-1510.	3.5	78
21	The transcriptomic response of <i>Acinetobacter baumannii</i> to colistin and doripenem alone and in combination in an <i>in vitro</i> pharmacokinetics/pharmacodynamics model. Journal of Antimicrobial Chemotherapy, 2015, 70, 1303-1313.	3.0	85
22	POS-1 Promotes Endo-mesoderm Development by Inhibiting the Cytoplasmic Polyadenylation of neg-1 mRNA. Developmental Cell, 2015, 34, 108-118.	7.0	22
23	Innate immune pathways in afferent lymph following vaccination with poly(I:C)-containing liposomes. Innate Immunity, 2014, 20, 501-510.	2.4	14
24	The Use of High-Throughput DNA Sequencing in the Investigation of Antigenic Variation: Application to Neisseria Species. PLoS ONE, 2014, 9, e86704.	2.5	12
25	Analysis of the Small RNA Transcriptional Response in Multidrug-Resistant Staphylococcus aureus after Antimicrobial Exposure. Antimicrobial Agents and Chemotherapy, 2013, 57, 3864-3874.	3.2	84
26	Regulation of Sialidase Production in Clostridium perfringens by the Orphan Sensor Histidine Kinase ReeS. PLoS ONE, 2013, 8, e73525.	2.5	15
27	Colistin-Resistant, Lipopolysaccharide-Deficient Acinetobacter baumannii Responds to Lipopolysaccharide Loss through Increased Expression of Genes Involved in the Synthesis and Transport of Lipoproteins, Phospholipids, and Poly-β-1,6- <i>N</i> -Acetylglucosamine. Antimicrobial Agents and Chemotherapy, 2012, 56, 59-69.	3.2	173
28	Transcriptional Profiling of a Yeast Colony Provides New Insight into the Heterogeneity of Multicellular Fungal Communities. PLoS ONE, 2012, 7, e46243.	2.5	34
29	Evolution of Multidrug Resistance during Staphylococcus aureus Infection Involves Mutation of the Essential Two Component Regulator WalkR. PLoS Pathogens, 2011, 7, e1002359.	4.7	315
30	The Dominant Australian Community-Acquired Methicillin-Resistant Staphylococcus aureus Clone ST93-IV [2B] Is Highly Virulent and Genetically Distinct. PLoS ONE, 2011, 6, e25887.	2.5	78
31	Necrotic Enteritis-Derived Clostridium perfringens Strain with Three Closely Related Independently Conjugative Toxin and Antibiotic Resistance Plasmids. MBio, 2011, 2, .	4.1	75
32	Complete Genome Sequence of <i>Staphylococcus aureus</i> Strain JKD6159, a Unique Australian Clone of ST93-IV Community Methicillin-Resistant <i>Staphylococcus aureus</i> Journal of Bacteriology, 2010, 192, 5556-5557.	2.2	54
33	Complete Genome Sequence of <i>Staphylococcus aureus</i> Strain JKD6008, an ST239 Clone of Methicillin-Resistant <i>Staphylococcus aureus</i> Journal of Bacteriology, 2010, 192, 5848-5849.	2.2	71
34	Two Novel Point Mutations in Clinical Staphylococcus aureus Reduce Linezolid Susceptibility and Switch on the Stringent Response to Promote Persistent Infection. PLoS Pathogens, 2010, 6, e1000944.	4.7	191
35	Fis Is Essential for Capsule Production in Pasteurella multocida and Regulates Expression of Other Important Virulence Factors. PLoS Pathogens, 2010, 6, e1000750.	4.7	71
36	Automated estimation of parasitaemia of Plasmodium yoelii-infected mice by digital image analysis of Giemsa-stained thin blood smears. Malaria Journal, 2010, 9, 348.	2.3	36

3

#	Article	IF	CITATION
37	Colistin Resistance in <i>Acinetobacter baumannii</i> Is Mediated by Complete Loss of Lipopolysaccharide Production. Antimicrobial Agents and Chemotherapy, 2010, 54, 4971-4977.	3.2	699
38	Immune cell kinetics in the ovine abomasal mucosa following hyperimmunization and challenge with <i>Haemonchus contortus </i> /i>. Veterinary Research, 2010, 41, 37.	3.0	34
39	Dynamic reserve design with the union-find algorithm. Ecological Modelling, 2008, 215, 369-376.	2.5	11
40	Insights from the complete genome sequence of <i>Mycobacterium marinum</i> on the evolution of <i>Mycobacterium tuberculosis</i> Genome Research, 2008, 18, 729-741.	5. 5	471