
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4300780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature, 2001, 412, 798-802.	27.8	873
2	Fast heating scalable to laser fusion ignition. Nature, 2002, 418, 933-934.	27.8	445
3	Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser. Scientific Reports, 2013, 3, 1170.	3.3	246
4	Radiative Jet Experiments of Astrophysical Interest Using Intense Lasers. Physical Review Letters, 1999, 83, 1982-1985.	7.8	158
5	Opacity Effect on Extreme Ultraviolet Radiation from Laser-Produced Tin Plasmas. Physical Review Letters, 2005, 95, 235004.	7.8	146
6	Prepulse-Free Petawatt Laser for a Fast Ignitor. IEEE Journal of Quantum Electronics, 2004, 40, 281-293.	1.9	145
7	Measurements of Rayleigh-Taylor Growth Rate of Planar Targets Irradiated Directly by Partially Coherent Light. Physical Review Letters, 1997, 78, 250-253.	7.8	113
8	Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams. Applied Physics Letters, 2005, 86, 051501.	3.3	108
9	Investigation of Ultrafast Laser-Driven Radiative Blast Waves. Physical Review Letters, 2001, 87, 085004.	7.8	104
10	Experiments on radiative collapse in laser-produced plasmas relevant to astrophysical jets. Physical Review E, 2000, 62, 8838-8841.	2.1	98
11	Direct-drive hydrodynamic instability experiments on the GEKKO XII laser. Physics of Plasmas, 1997, 4, 4079-4089.	1.9	92
12	Suppression of the Rayleigh-Taylor Instability due to Self-Radiation in a Multiablation Target. Physical Review Letters, 2004, 92, 195001.	7.8	74
13	High-Mach number collisionless shock and photo-ionized non-LTE plasma for laboratory astrophysics with intense lasers. Plasma Physics and Controlled Fusion, 2008, 50, 124057.	2.1	60
14	Dynamic Behavior of Rippled Shock Waves and Subsequently Induced Areal-Density-Perturbation Growth in Laser-Irradiated Foils. Physical Review Letters, 1995, 74, 3608-3611.	7.8	59
15	Basic and integrated studies for fast ignition. Physics of Plasmas, 2003, 10, 1925-1930.	1.9	58
16	Comprehensive Diagnosis of Growth Rates of the Ablative Rayleigh-Taylor Instability. Physical Review Letters, 2007, 98, 045002.	7.8	58
17	Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification. Nature Geoscience, 2014, 7, 279-282.	12.9	57
18	Fast ignition integrated experiments with Gekko and LFEX lasers. Plasma Physics and Controlled Fusion, 2011, 53, 124029.	2.1	55

#	Article	IF	CITATIONS
19	Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field. Physics of Plasmas, 2016, 23, .	1.9	54
20	Developing a Radiative Shock Experiment Relevant to Astrophysics. Astrophysical Journal, 2000, 533, L159-L162.	4.5	53
21	Ablative Rayleigh-Taylor Instability at Short Wavelengths Observed with Moiré Interferometry. Physical Review Letters, 2002, 88, 145003.	7.8	53
22	Hugoniot measurement of diamond under laser shock compression up to 2TPa. Physics of Plasmas, 2006, 13, 052705.	1.9	53
23	The Production of Strong Blast Waves through Intense Laser Irradiation of Atomic Clusters. Astrophysical Journal, Supplement Series, 2000, 127, 299-304.	7.7	49
24	Shock Hugoniot and temperature data for polystyrene obtained with quartz standard. Physics of Plasmas, 2009, 16, .	1.9	46
25	Plasma physics and laser development for the Fast-Ignition Realization Experiment (FIREX) Project. Nuclear Fusion, 2009, 49, 104024.	3.5	45
26	Experimental Evidence of Impact Ignition: 100-Fold Increase of Neutron Yield by Impactor Collision. Physical Review Letters, 2009, 102, 235002.	7.8	45
27	High-energy-density plasmas generation on GEKKO-LFEX laser facility for fast-ignition laser fusion studies and laboratory astrophysics. Plasma Physics and Controlled Fusion, 2012, 54, 124042.	2.1	40
28	GEKKO/HIPER-driven shock waves and equation-of-state measurements at ultrahigh pressures. Physics of Plasmas, 2004, 11, 1600-1608.	1.9	38
29	First observation of density profile in directly laser-driven polystyrene targets for ablative Rayleigh–Taylor instability research. Physics of Plasmas, 2003, 10, 4784-4789.	1.9	36
30	Fast plasma heating in a cone-attached geometry—towards fusion ignition. Nuclear Fusion, 2004, 44, S276-S283.	3.5	36
31	Laser-shock compression and Hugoniot measurements of liquid hydrogen to 55 GPa. Physical Review B, 2011, 83, .	3.2	35
32	Recent progress of implosion experiments with uniformityâ€improved GEKKO XII laser facility at the Institute of Laser Engineering, Osaka University. Physics of Plasmas, 1996, 3, 2077-2083.	1.9	34
33	Foam materials for cryogenic targets of fast ignition realization experiment (FIREX). Nuclear Fusion, 2005, 45, 1277-1283.	3.5	34
34	Modeling of Laserâ€generated Radiative Blast Waves. Astrophysical Journal, 2000, 538, 645-652.	4.5	31
35	SILICATE DUST SIZE DISTRIBUTION FROM HYPERVELOCITY COLLISIONS: IMPLICATIONS FOR DUST PRODUCTION IN DEBRIS DISKS. Astrophysical Journal Letters, 2011, 733, L39.	8.3	31
36	Indirect-direct hybrid target experiments with the GEKKO XII laser. Nuclear Fusion, 2000, 40, 547-556.	3.5	30

#	Article	IF	CITATIONS
37	Suppression of Rayleigh–Taylor instability due to radiative ablation in brominated plastic targets. Physics of Plasmas, 2004, 11, 2814-2822.	1.9	29
38	Present status of fast ignition realization experiment and inertial fusion energy development. Nuclear Fusion, 2013, 53, 104021.	3.5	27
39	Towards realization of hyper-velocities for impact fast ignition. Plasma Physics and Controlled Fusion, 2005, 47, B815-B822.	2.1	25
40	Flash Kα radiography of laser-driven solid sphere compression for fast ignition. Applied Physics Letters, 2016, 108, .	3.3	25
41	Equation-of-state measurements for polystyrene at multi-TPa pressures in laser direct-drive experiments. Physics of Plasmas, 2005, 12, 124503.	1.9	24
42	Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment. Physical Review E, 2015, 91, 063102.	2.1	23
43	Integrated experiments of fast ignition targets by Gekko-XII and LFEX lasers. High Energy Density Physics, 2012, 8, 227-230.	1.5	22
44	Feed-out of Rear Surface Perturbation due to Rarefaction Wave in Laser-Irradiated Targets. Physical Review Letters, 2000, 84, 5331-5334.	7.8	21
45	Reduction of the Rayleigh-Taylor instability growth with cocktail color irradiation. Physics of Plasmas, 2007, 14, 122702.	1.9	20
46	Preliminary results from the LMJ-PETAL experiment on hot electrons characterization in the context of shock ignition. High Energy Density Physics, 2020, 36, 100796.	1.5	19
47	Progress and perspectives of fast ignition. Plasma Physics and Controlled Fusion, 2004, 46, B41-B49.	2.1	18
48	Penumbral imaging for measurement of the ablation density in laser-driven targets. Review of Scientific Instruments, 2002, 73, 2588-2596.	1.3	16
49	Shockâ€induced silicate vaporization: The role of electrons. Journal of Geophysical Research, 2012, 117, .	3.3	16
50	Moiré interferometry of short wavelength Rayleigh–Taylor growth. Review of Scientific Instruments, 1999, 70, 637-641.	1.3	15
51	Single spatial mode experiments on initial laser imprint on direct-driven planar targets. Physics of Plasmas, 2002, 9, 1734-1744.	1.9	15
52	Impact experiments with a new technique for acceleration of projectiles to velocities higher than Earth's escape velocity of 11.2 km/s. Journal of Geophysical Research, 2010, 115, .	3.3	15
53	Fast heating of super-solid density plasmas towards laser fusion ignition. Plasma Physics and Controlled Fusion, 2002, 44, B109-B119.	2.1	14
54	Rayleigh–Taylor instability growth on low-density foam targets. Physics of Plasmas, 2008, 15, .	1.9	14

#	Article	IF	CITATIONS
55	Measurement of heating laser injection time to imploded core plasma by using x-ray framing camera. Review of Scientific Instruments, 2008, 79, 10E909.	1.3	14
56	Sound velocity and density measurements of liquid iron up to 800 GPa: A universal relation between Birch's law coefficients for solid and liquid metals. Earth and Planetary Science Letters, 2014, 392, 80-85.	4.4	13
57	Development of a 100-J DPSSL as a laser processing platform in the TACMI consortium. High Energy Density Physics, 2020, 36, 100800.	1.5	13
58	Imprint reduction in a plasma layer preformed with x-ray irradiation. Physics of Plasmas, 2002, 9, 1381-1391.	1.9	12
59	Side-on measurement of hydrodynamics of laser-driven plasmas with high space- and time-resolution x-ray imaging technique. Review of Scientific Instruments, 2003, 74, 2198-2201.	1.3	12
60	Present states and future prospect of fast ignition realization experiment (FIREX) with Gekko and LFEX Lasers at ILE. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 653, 84-88.	1.6	10
61	Temperature measurements of electrostatic shocks inÂlaser-produced counter-streaming plasmas. Astrophysics and Space Science, 2011, 336, 283-286.	1.4	10
62	Recovery of entire shocked samples in a range of pressure from ~100Â <scp>GP</scp> a to Hugoniot elastic limit. Meteoritics and Planetary Science, 2016, 51, 1153-1162.	1.6	10
63	Characterization of Extreme UV Radiation from Laser Produced Spherical Tin Plasmas for Use in Lithography. Journal of Plasma and Fusion Research, 2004, 80, 325-330.	0.4	10
64	Dynamic Behavior of Rippled Shock Waves and Subsequently Induced Areal-Density-Perturbation Growth in Laser-Irradiated Foils. Physical Review Letters, 1995, 75, 2908-2908.	7.8	9
65	Measurements of mass ablation rate of laser-irradiated target by the face-on x-ray backlighting technique. Review of Scientific Instruments, 1998, 69, 3942-3944.	1.3	9
66	Measurement of preheating due to radiation and nonlocal electron heat transport in laser-irradiated targets. Physics of Plasmas, 2010, 17, 032702.	1.9	9
67	Inâ€situ spectroscopic observations of silicate vaporization due to >10 km/s impacts using laser driven projectiles. Geophysical Research Letters, 2010, 37, .	4.0	9
68	A new target design for laser shock-compression studies of carbon reflectivity in the megabar regime. European Physical Journal D, 2013, 67, 1.	1.3	9
69	Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion. Diamond and Related Materials, 2018, 86, 15-19.	3.9	9
70	Effect of equation of state on laser imprinting by comparing diamond and polystyrene foils. Physics of Plasmas, 2018, 25, 032706.	1.9	9
71	Laser astrophysics experiment on the amplification of magnetic fields by shock-induced interfacial instabilities. Physical Review E, 2021, 104, 035206.	2.1	9
72	Measurements of sound velocity of laser-irradiated iron foils relevant to Earth core condition. European Physical Journal D, 2007, 44, 301-305.	1.3	8

#	Article	IF	CITATIONS
73	Suppression of the Rayleigh–Taylor instability and its implication for the impact ignition. Plasma Physics and Controlled Fusion, 2004, 46, B245-B254.	2.1	7
74	Shock Pyrometry of Laser-Irradiated Foils Below 1 eV. Japanese Journal of Applied Physics, 2006, 45, 4224-4226.	1.5	7
75	Bremsstrahlung cannon design for shock ignition relevant regime. Review of Scientific Instruments, 2021, 92, 013501.	1.3	7
76	Recent progress in matter in extreme states created by laser. Matter and Radiation at Extremes, 2022, 7,	3.9	7
77	Perturbation transfer from the front to rear surface of laser-irradiated targets. Physical Review E, 2002, 65, 045401.	2.1	6
78	Study on EUV emission properties of laser-produced plasma at ILE, Osaka. , 2004, , .		6
79	Liquid Structure of Tantalum under Internal Negative Pressure. Physical Review Letters, 2021, 126, 175503.	7.8	6
80	Formation of Initial Perturbation of Rayleighâ€Taylor Instability in Supernovae and Laserâ€irradiated Targets—Is There Any Similarity?. Astrophysical Journal, Supplement Series, 2000, 127, 219-225.	7.7	6
81	Rippled shock propagation and hydrodynamic perturbation growth in laser implosion. Journal of Materials Processing Technology, 1999, 85, 34-38.	6.3	5
82	X-ray imaging diagnostics for laser-driven hydrodynamic instability experiments. Review of Scientific Instruments, 2003, 74, 2194-2197.	1.3	5
83	Estimation of emission efficiency for laser-produced EUV plasmas. , 2004, , .		5
84	Properties of EUV emissions from laser-produced tin plasmas. , 2004, 5374, 912.		5
85	Sound velocity measurements by x-ray shadowgraph technique for melting phenomena at ultrahigh-pressure regime. Review of Scientific Instruments, 2012, 83, 10E529.	1.3	5
86	<i>In situ</i> observation of the Rayleigh–Taylor instability of liquid Fe and Fe–Si alloys under extreme conditions: Implications for planetary core formation. Matter and Radiation at Extremes, 2021, 6, .	3.9	5
87	Implosion hydrodynamics and heating synchronization measurement using X-ray framing cameras. Journal of Physics: Conference Series, 2010, 244, 022043.	0.4	4
88	Time-resolved spectroscopic observations of shockinduced silicate ionization. AIP Conference Proceedings, 2012, , .	0.4	4
89	Extremely high-pressure generation and compression with laser implosion plasmas. Applied Physics Letters, 2013, 102, .	3.3	4
90	An optimum design of implosion with external magnetic field for electron beam guiding in fast ignition. Journal of Physics: Conference Series, 2016, 717, 012041.	0.4	4

#	Article	IF	CITATIONS
91	Observation of ultra-high energy density state with x-ray free electron laser SACLA. High Energy Density Physics, 2020, 36, 100813 Hugoniot equation-of-state and structure of laser-shocked polyimide <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:math< td=""><td>1.5</td><td>4</td></mml:math<></mml:mrow></mml:math 	1.5	4
92	mathvariant="normal">C <mml:mn>22</mml:mn> <mml:msub><mml:mi mathvariant="normal">H<mml:mn>10</mml:mn></mml:mi </mml:msub> <mml:msub><mml:mi mathvariant="normal">N<mml:mn>2</mml:mn></mml:mi </mml:msub> <mml:msub><mml:mi mathvariant="normal">O<mml:mn>5</mml:mn></mml:mi </mml:msub>	3.2	4
93	Physi Experimental observation of transmission- and self-emission-type radiation transport in x-ray-produced plasmas. Physical Review E, 1994, 49, R1815-R1818.	2.1	3
94	Shigemorietal.Reply:. Physical Review Letters, 1998, 80, 3415-3415.	7.8	3
95	Indirect/direct hybrid drive implosion experiments with x-ray pre-irradiation. , 2000, 3886, 465.		3
96	Dependence of EUV emission properties on laser wavelength. , 2004, , .		3
97	Neutron generation from impact fast ignition. Journal of Physics: Conference Series, 2008, 112, 022065.	0.4	3
98	Hugoniot and temperature measurements of liquid hydrogen by laser-shock compression. Journal of Physics: Conference Series, 2010, 244, 042018.	0.4	3
99	Measurement of heating laser injection time in a fast-ignition experiment. Plasma Physics and Controlled Fusion, 2014, 56, 045004.	2.1	3
100	Improvement in the heating efficiency of fast ignition inertial confinement fusion through suppression of the preformed plasma. Nuclear Fusion, 2017, 57, 066022.	3.5	3
101	The role of hot electrons on ultrahigh pressure generation relevant to shock ignition conditions. High Energy Density Physics, 2020, 37, 100892.	1.5	3
102	Temperature-Dependent EUV Spectra of Xenon Plasmas Observed in the Compact Helical System. Journal of Plasma and Fusion Research, 2005, 81, 480-481.	0.4	3
103	Direct-drive implosion experiment of diamond capsules fabricated with hot filament chemical vapor deposition technique. Physics of Plasmas, 2021, 28, 104501.	1.9	3
104	Development of an experimental platform for the investigation of laser–plasma interaction in conditions relevant to shock ignition regime. Review of Scientific Instruments, 2022, 93, .	1.3	3
105	Effects of non-local electron thermal transport on ablative Rayleigh-Taylor instability. Fusion Engineering and Design, 1999, 44, 205-208.	1.9	2
106	Density profile of the ablating plasma produced by soft x-ray irradiation. Review of Scientific Instruments, 2001, 72, 653-656.	1.3	2
107	Laser-produced blast wave and numerical simulation using the FLASH code. Laser and Particle Beams, 2005, 23, 513-519.	1.0	2
108	Impact vaporization of rocks using a high-power laser. Journal of Physics: Conference Series, 2008, 112, 042014.	0.4	2

#	Article	IF	CITATIONS
109	Multiple shock compression of diamond foils with a shaped laser pulse over 1 TPa. Journal of Physics: Conference Series, 2008, 112, 042023.	0.4	2
110	Direct measurement of chemical composition of SOx in impact vapor using a laser gun. , 2012, , .		2
111	Implosion and heating experiments of fast ignition targets by Gekko-XII and LFEX lasers. EPJ Web of Conferences, 2013, 59, 01008.	0.3	2
112	Dependences of morphology and surface roughness on growth conditions of diamond capsules for the direct-drive inertial confinement fusion. High Energy Density Physics, 2020, 37, 100849.	1.5	2
113	Refractive index measurements of solid deuterium–tritium. Scientific Reports, 2022, 12, 2223.	3.3	2
114	Shock Hugoniot Data for Water up to 5 Mbar Obtained with Quartz Standard at High-Energy Laser Facilities. Laser and Particle Beams, 2021, 2021, .	1.0	2
115	High-convergence uniform implosion of fusion pellets with the new GEKKO laser. Plasma Physics and Controlled Fusion, 1997, 39, A401-A409.	2.1	1
116	Measurements of Sound Velocity of Laser-Irradiated Iron Foils Relevant to Earth Core Condition. AIP Conference Proceedings, 2006, , .	0.4	1
117	e-Science in high energy density science research. Fusion Engineering and Design, 2008, 83, 525-529.	1.9	1
118	Streaked x-ray backlighting with twin-slit imager for study of density profile and trajectory of low-density foam target filled with deuterium liquid. Review of Scientific Instruments, 2008, 79, 10E916.	1.3	1
119	Observation of the non-local electron transport effect by using phase zone plate. Journal of Physics: Conference Series, 2008, 112, 022008.	0.4	1
120	Non-dimensional scaling of impact fast ignition experiments. Journal of Physics: Conference Series, 2008, 112, 022071.	0.4	1
121	WIDE ANGLE X-RAY DIFFRACTION FOR SHOCKED PERICLASE. , 2009, , .		1
122	Present status and future prospect of Fast Ignition Realization Experiment (FIREX) Project at ILE, Osaka. , 2010, , .		1
123	Flyer acceleration by high-power laser and impact experiments at velocities higher than 10 km/s. , 2012, , .		1
124	Advances in the investigation of shock-induced reflectivity of porous carbon. Laser and Particle Beams, 2013, 31, 457-464.	1.0	1
125	Flyer acceleration experiments using high-power laser. EPJ Web of Conferences, 2013, 59, 19002.	0.3	1
126	High-resolution X-ray imaging in fast ignition experiment using Gekko and LFEX lasers. EPJ Web of Conferences, 2013, 59, 03006.	0.3	1

KEISUKE SHIGEMORI

#	Article	IF	CITATIONS
127	Measurements of Preformed Plasma Generation and Its Suppression Inside a Cone in a Cone-in-Shell Target for Fast Ignition. Plasma and Fusion Research, 2015, 10, 1404076-1404076.	0.7	1
128	Mitigation of Laser Imprinting with Diamond Ablator for Direct-Drive Inertial Confinement Fusion Targets. Journal of Physics: Conference Series, 2016, 688, 012107.	0.4	1
129	Converging shock generation with cone target filled with low density foam. Journal of Physics: Conference Series, 2016, 717, 012050.	0.4	1
130	Measurements of Rayleigh–Taylor instability growth ofÂlaser-shocked iron–silicon alloy. High Pressure Research, 2019, 39, 150-159.	1.2	1
131	Surface structure on diamond foils generated by spatially nonuniform laser irradiation. Scientific Reports, 2020, 10, 9017.	3.3	1
132	Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. , 0, .		1
133	Measurements of sound velocity of laser-irradiated iron foils relevant to earth core condition. European Physical Journal Special Topics, 2006, 133, 37-41.	0.2	1
134	Characterization of GEKKO/HIPER-Driven Shock Waves for Equation-of-State Experiments in Ultra-High-Pressure Regime. Journal of Plasma and Fusion Research, 2004, 80, 486-491.	0.4	1
135	Advanced Target Design for the FIREX-I Project. Plasma and Fusion Research, 2009, 4, S1001-S1001.	0.7	1
136	Progress of Advanced Fusion Energy Studies with Ultra-Intense Lasers Journal of Plasma and Fusion Research, 2002, 78, 792-798.	0.4	1
137	Simultaneous Measurement of Temperature, Pressure and Shock-Wave Velocity of Compressed Polystyrene. Journal of Plasma and Fusion Research, 2004, 80, 476-481.	0.4	1
138	Experimental Study on High-Pressure Earth Science with Intense Laser. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2008, 18, 55-61.	0.0	1
139	Hydrodynamic perturbation growth in the start-up phase. Fusion Engineering and Design, 1999, 44, 199-203.	1.9	0
140	High-speed x-ray radiographic measurement of laser-driven hydrodynamic instability. , 2003, 4948, 425.		0
141	Progress in understanding of laser-produced plasmas for EUV source. , 0, , .		0
142	Experimental study on basic properties of laser-produced EUV plasmas on GEKKO-XII laser facility. , 2004, , .		0
143	Experimental study on ablative stabilization of Rayleigh-Taylor instability of laser-irradiated targets. , 2004, , .		0
144	Fabrication and characterization of planar cryogenic targets for GEKKO-XII. Journal of Physics: Conference Series, 2008, 112, 032068.	0.4	0

9

#	Article	IF	CITATIONS
145	Temperature measurement of preheated planar-cryogenic targets. Journal of Physics: Conference Series, 2008, 112, 022012.	0.4	0
146	Measurement of PW laser injection time to imploded core plasma by using X-ray framing camera. Journal of Physics: Conference Series, 2008, 112, 022069.	0.4	0
147	Simultaneous measurement of imploded core and heating laser injection by using x-ray framing camera. Proceedings of SPIE, 2008, , .	0.8	Ο
148	Laboratory experiments to study astrophysical shock and jets. Journal of Physics: Conference Series, 2008, 112, 042020.	0.4	0
149	IMPACT EXPERIMENTS WITH PROJECTILES AT VELOCITIES HIGHER THAN 10 KMâ^•S. , 2009, , .		0
150	Experimental investigation to demonstrate Impact Fast Ignition scheme. Journal of Physics: Conference Series, 2010, 244, 022071.	0.4	0
151	Observation of Complex Optical Processes in ZnSe under Extreme Optical Excitation from a Kilojoule-Class Nd:Glass Laser. Japanese Journal of Applied Physics, 2010, 49, 062601.	1.5	0
152	Progress of impact ignition. , 2011, , .		0
153	Investigation of carbon in megabar regime. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 653, 116-120.	1.6	0
154	About carbon reflectivity in the Mbar regime. Physica Scripta, 2014, T161, 014018.	2.5	0
155	3 × 10 ⁸ D-D Neutron Generation by High-Intensity Laser Irradiation onto the Inner Surface of Spherical CD Shells. Plasma and Fusion Research, 2018, 13, 2401028-2401028.	0.7	0
156	Generation of residual stress field in metal by an interference shock wave. High Energy Density Physics, 2020, 37, 100864.	1.5	0
157	Two-color laser-plasma interactions for efficient production of non-thermal hot electrons. High Energy Density Physics, 2020, 36, 100843.	1.5	0
158	Rayleigh Taylor and Laser Imprinting Diagnostics. , 2002, , 169-176.		0
159	Suppression of Rayleigh-Taylor Instability Using High-Z Doped Plastic Targets for Inertial Fusion Energy. Journal of Plasma and Fusion Research, 2004, 80, 597-604.	0.4	0
160	Towards Metallization of Carbon by Strong Shock Compression with Intense Laser. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2006, 16, 243-250.	0.0	0
161	High pressure generation and its implications by strong shock wave with intense laser. The Review of Laser Engineering, 2008, 36, 59-60.	0.0	0
162	Laser-Shock Compression of Liquid Hydrogen and Interior Structure of Jupiter. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2009, 19, 186-194.	0.0	0

#	Article	IF	CITATIONS
163	Three-photon Lasing from ZnSe Excited by a kilojoule-class Nd:Glass Laser. , 2009, , .		ο
164	Sound Velocity Measurement of Pure Iron under Earth's Core Conditions Using Dynamic Compression. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2011, 21, 84-90.	0.0	0
165	Rippled Shock Propagation and Hydrodynamic Perturbation Growth in Laser Implosion Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1998, 7, 930-932.	0.0	0
166	Propagation of Sinusoidally-Corrugated Shock Fronts of Laser-Supported Detonations. , 2015, , 271-276.		0