Fraser Soares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4300278/publications.pdf

Version: 2024-02-01

27 4,110 papers citations

331670
21
h-index

26 g-index

27 all docs 27 docs citations

27 times ranked 8816 citing authors

#	Article	IF	CITATIONS
1	The Basis and Promise of Programmable RNA Editing and Modification. Frontiers in Genetics, 2022, 13, 834413.	2.3	13
2	Mitochondrial protein import stress regulates the LC3 lipidation step of mitophagy through NLRX1 and RRBP1. Molecular Cell, 2022, 82, 2815-2831.e5.	9.7	25
3	CRISPR screen identifies genes that sensitize AML cells to double-negative T-cell therapy. Blood, 2021, 137, 2171-2181.	1.4	23
4	Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to human prostate cancer progression. Nature Cell Biology, 2021, 23, 87-98.	10.3	209
5	CRISPRi screens reveal a DNA methylation-mediated 3D genome dependent causal mechanism in prostate cancer. Nature Communications, 2021, 12, 1781.	12.8	32
6	CRISPR screens identify cholesterol biosynthesis as a therapeutic target on stemness and drug resistance of colon cancer. Oncogene, 2021, 40, 6601-6613.	5.9	37
7	Noncoding mutations target cis-regulatory elements of the FOXA1 plexus in prostate cancer. Nature Communications, 2020, 11, 441.	12.8	51
8	Widespread and Functional RNA Circularization in Localized Prostate Cancer. Cell, 2019, 176, 831-843.e22.	28.9	317
9	The mitochondrial Nod-like receptor NLRX1 modifies apoptosis through SARM1. Molecular and Cellular Biochemistry, 2019, 453, 187-196.	3.1	33
10	Refined RIP-seq protocol for epitranscriptome analysis with low input materials. PLoS Biology, 2018, 16, e2006092.	5.6	112
11	Risk SNP-Mediated Promoter-Enhancer Switching Drives Prostate Cancer through IncRNA PCAT19. Cell, 2018, 174, 564-575.e18.	28.9	264
12	Noncoding RNA for personalized prostate cancer treatment: utilizing the †dark matters†of the genome. Personalized Medicine, 2017, 14, 159-169.	1.5	0
13	Transcriptional landscape of the human cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3473-3478.	7.1	110
14	LSD1-Mediated Epigenetic Reprogramming Drives CENPE Expression and Prostate Cancer Progression. Cancer Research, 2017, 77, 5479-5490.	0.9	71
15	Crucial role of noncoding RNA in driving prostate cancer development and progression. Epigenomics, 2017, 9, 1-3.	2.1	4
16	Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer. Nature Genetics, 2016, 48, 1142-1150.	21.4	196
17	NOD-Like Receptors: Versatile Cytosolic Sentinels. Physiological Reviews, 2015, 95, 149-178.	28.8	270
18	The Mitochondrial Protein NLRX1 Controls the Balance between Extrinsic and Intrinsic Apoptosis. Journal of Biological Chemistry, 2014, 289, 19317-19330.	3.4	63

#	Article	IF	CITATIONS
19	Peptidoglycan ld-Carboxypeptidase Pgp2 Influences Campylobacter jejuni Helical Cell Shape and Pathogenic Properties and Provides the Substrate for the dl-Carboxypeptidase Pgp1. Journal of Biological Chemistry, 2014, 289, 8007-8018.	3.4	69
20	NLRX1 does not inhibit MAVS-dependent antiviral signalling. Innate Immunity, 2013, 19, 438-448.	2.4	73
21	Post-transcriptional Inhibition of Luciferase Reporter Assays by the Nod-like Receptor Proteins NLRX1 and NLRC3. Journal of Biological Chemistry, 2012, 287, 28705-28716.	3.4	29
22	Amino Acid Starvation Induced by Invasive Bacterial Pathogens Triggers an Innate Host Defense Program. Cell Host and Microbe, 2012, 11, 563-575.	11.0	331
23	Mitochondria in innate immunity. EMBO Reports, 2011, 12, 901-910.	4.5	222
24	Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nature Immunology, 2010, 11, 55-62.	14.5	1,125
25	Enhancement of Reactive Oxygen Species Production and Chlamydial Infection by the Mitochondrial Nod-like Family Member NLRX1. Journal of Biological Chemistry, 2010, 285, 41637-41645.	3.4	124
26	An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix. Journal of Cell Science, 2009, 122, 3161-3168.	2.0	167
27	Shigella Induces Mitochondrial Dysfunction and Cell Death in Nonmyleoid Cells. Cell Host and Microbe, 2009, 5, 123-136.	11.0	140