Craig R Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4299449/publications.pdf

Version: 2024-02-01

144 papers 12,464 citations

56 h-index 27406 106 g-index

149 all docs

149 docs citations

149 times ranked 8044 citing authors

#	Article	IF	CITATIONS
1	Man and the Last Great Wilderness: Human Impact on the Deep Sea. PLoS ONE, 2011, 6, e22588.	2.5	654
2	Deep, diverse and definitely different: unique attributes of the world's largest ecosystem. Biogeosciences, 2010, 7, 2851-2899.	3.3	619
3	Environmental Influences on Regional Deep-Sea Species Diversity. Annual Review of Ecology, Evolution, and Systematics, 2001, 32, 51-93.	6.7	607
4	Abyssal food limitation, ecosystem structure and climate change. Trends in Ecology and Evolution, 2008, 23, 518-528.	8.7	511
5	Whales as marine ecosystem engineers. Frontiers in Ecology and the Environment, 2014, 12, 377-385.	4.0	308
6	Vent fauna on whale remains. Nature, 1989, 341, 27-28.	27.8	289
7	A proposed biogeography of the deep ocean floor. Progress in Oceanography, 2013, 111, 91-112.	3.2	278
8	Do mussels take wooden steps to deep-sea vents?. Nature, 2000, 403, 725-726.	27.8	254
9	Major impacts of climate change on deep-sea benthic ecosystems. Elementa, 2017, 5, .	3.2	252
10	The deep-sea floor ecosystem: current status and prospects of anthropogenic change by the year 2025. Environmental Conservation, 2003, 30, 219-241.	1.3	249
11	Nematode-specific PCR primers for the 18S small subunit rRNA gene. Molecular Ecology Notes, 2005, 5, 611-612.	1.7	226
12	Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS ONE, 2017, 12, e0171750.	2.5	222
13	A mechanistic view of the particulate biodiffusion coefficient: Step lengths, rest periods and transport directions. Journal of Marine Research, 1990, 48, 177-207.	0.3	219
14	Defining "serious harm―to the marine environment in the context of deep-seabed mining. Marine Policy, 2016, 74, 245-259.	3.2	213
15	Phytodetritus at the abyssal seafloor across 10° of latitude in the central equatorial Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 1996, 43, 1309-1338.	1.4	202
16	Near-island biological hotspots in barren ocean basins. Nature Communications, 2016, 7, 10581.	12.8	198
17	Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century. PLoS Biology, 2013, 11, e1001682.	5.6	194
18	The Southern Ocean ecosystem under multiple climate change stresses ―an integrated circumpolar assessment. Global Change Biology, 2015, 21, 1434-1453.	9.5	190

#	Article	IF	CITATIONS
19	Managing mining of the deep seabed. Science, 2015, 349, 144-145.	12.6	187
20	From principles to practice: a spatial approach to systematic conservation planning in the deep sea. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131684.	2.6	179
21	Whale-Fall Ecosystems: Recent Insights into Ecology, Paleoecology, and Evolution. Annual Review of Marine Science, 2015, 7, 571-596.	11.6	174
22	Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone. Scientific Reports, 2016, 6, 30492.	3.3	173
23	Food for the deep sea: utilization, dispersal, and flux of nekton falls at the Santa catalina basin floor. Deep-sea Research Part A, Oceanographic Research Papers, 1985, 32, 417-442.	1.5	171
24	A synthesis of bentho-pelagic coupling on the Antarctic shelf: Food banks, ecosystem inertia and global climate change. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 875-894.	1.4	166
25	Global Observing Needs in the Deep Ocean. Frontiers in Marine Science, 2019, 6, .	2.5	166
26	Age-dependent mixing of deep-sea sediments. Geochimica Et Cosmochimica Acta, 1993, 57, 1473-1488.	3.9	154
27	Biodiversity loss from deep-sea mining. Nature Geoscience, 2017, 10, 464-465.	12.9	154
28	Hawaiian hotspots: enhanced megafaunal abundance and diversity in submarine canyons on the oceanic islands of Hawaii. Marine Ecology, 2010, 31, 183-199.	1.1	153
29	Latitudinal variations in benthic processes in the abyssal equatorial Pacific: control by biogenic particle flux. Deep-Sea Research Part II: Topical Studies in Oceanography, 1997, 44, 2295-2317.	1.4	148
30	World-wide whale worms? A new species of Osedax from the shallow north Atlantic. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2587-2592.	2.6	145
31	Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 74-83.	1.4	142
32	Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nature Ecology and Evolution, 2020, 4, 181-192.	7.8	142
33	An ecosystem-based deep-ocean strategy. Science, 2017, 355, 452-454.	12.6	135
34	Deep-water taphonomy of vertebrate carcasses: a whale skeleton in the bathyal Santa Catalina Basin. Paleobiology, 1991, 17, 78-89.	2.0	128
35	Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls. PLoS ONE, 2012, 7, e33515.	2.5	122
36	Megafaunal Communities in Rapidly Warming Fjords along the West Antarctic Peninsula: Hotspots of Abundance and Beta Diversity. PLoS ONE, 2013, 8, e77917.	2.5	120

#	Article	IF	CITATIONS
37	The roles of habitat heterogeneity in generating and maintaining biodiversity on continental margins: an introduction. Marine Ecology, 2010, 31, 1-5.	1.1	116
38	Evidence for the microbial basis of a chemoautotrophic invertebrate community at a whale fall on the deep seafloor: Bone-colonizing bacteria and invertebrate endosymbionts., 1997, 37, 162-170.		105
39	Midwater ecosystems must be considered when evaluating environmental risks of deep-sea mining. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17455-17460.	7.1	104
40	Macrofaunal succession in sediments around kelp and wood falls in the deep NE Pacific and community overlap with other reducing habitats. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57, 708-723.	1.4	103
41	The effects of patch size and substrate isolation on colonization modes and rates in an intertidal sediment. Limnology and Oceanography, 1989, 34, 1263-1277.	3.1	102
42	Direct measurement of the diffusive sublayer at the deep sea floor using oxygen microelectrodes. Nature, 1989, 340, 623-626.	27.8	100
43	A large population of king crabs in Palmer Deep on the west Antarctic Peninsula shelf and potential invasive impacts. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1017-1026.	2.6	100
44	Deep-Sea Mining With No Net Loss of Biodiversity—An Impossible Aim. Frontiers in Marine Science, 2018, 5, .	2.5	99
45	Chlorophyll-a and pheopigments as tracers of labile organic carbon at the central equatorial Pacific seafloor. Geochimica Et Cosmochimica Acta, 1997, 61, 4605-4619.	3.9	97
46	Trophic structure on the West Antarctic Peninsula shelf: Detritivory and benthic inertia revealed by Î13C and Î15N analysis. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 2502-2514.	1.4	96
47	Polymetallic nodules, sediments, and deep waters in the equatorial North Pacific exhibit highly diverse and distinct bacterial, archaeal, and microeukaryotic communities. MicrobiologyOpen, 2017, 6, e00428.	3.0	93
48	A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining. Science Advances, 2018, 4, eaar 4313.	10.3	85
49	What controls the mixedâ€layer depth in deepâ€sea sediments? The importance of POC flux. Limnology and Oceanography, 2002, 47, 418-426.	3.1	82
50	Feeding selectivity and rapid particle processing by deep-sea megafaunal deposit feeders: A ²³⁴ Th tracer approach. Journal of Marine Research, 2000, 58, 653-673.	0.3	81
51	Spatial scale-dependent habitat heterogeneity influences submarine canyon macrofaunal abundance and diversity off the Main and Northwest Hawaiian Islands. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 104, 267-290.	1.4	81
52	An End-to-End DNA Taxonomy Methodology for Benthic Biodiversity Survey in the Clarion-Clipperton Zone, Central Pacific Abyss. Journal of Marine Science and Engineering, 2016, 4, 2.	2.6	81
53	A global seamount classification to aid the scientific design of marine protected area networks. Ocean and Coastal Management, 2011, 54, 19-36.	4.4	76
54	Species–energy relationships in deep-sea molluscs. Biology Letters, 2011, 7, 718-722.	2.3	71

#	Article	IF	Citations
55	Cross-disciplinarity in the advance of Antarctic ecosystem research. Marine Genomics, 2018, 37, 1-17.	1.1	70
56	Deep-Sea Misconceptions Cause Underestimation of Seabed-Mining Impacts. Trends in Ecology and Evolution, 2020, 35, 853-857.	8.7	68
57	Assessment of scientific gaps related to the effective environmental management of deep-seabed mining. Marine Policy, 2022, 138, 105006.	3.2	67
58	The FOODBANCS project: Introduction and sinking fluxes of organic carbon, chlorophyll-a and phytodetritus on the western Antarctic Peninsula continental shelf. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 2404-2414.	1.4	59
59	Dynamics of surficial trace assemblages in the deep sea. Deep-sea Research Part A, Oceanographic Research Papers, 1989, 36, 71-91.	1.5	58
60	Morphology, reproductive biology and genetic structure of the whale-fall and hydrothermal vent specialist, Bathykurila guaymasensisPettibone, 1989 (Annelida: Polynoidae). Marine Ecology, 2005, 26, 223-234.	1.1	58
61	Environmental and bathymetric influences on abyssal bait-attending communities of the Clarion Clipperton Zone. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 125, 65-80.	1.4	58
62	Megafauna Can Control the Quality of Organic Matter in Marine Sediments. Die Naturwissenschaften, 1999, 86, 320-324.	1.6	57
63	From the Surface to the Deep-Sea: Bacterial Distributions across Polymetallic Nodule Fields in the Clarion-Clipperton Zone of the Pacific Ocean. Frontiers in Microbiology, 2017, 8, 1696.	3.5	54
64	Antarctic ecosystems in transition – life between stresses and opportunities. Biological Reviews, 2021, 96, 798-821.	10.4	53
65	Patterns of eukaryotic diversity from the surface to the deep-ocean sediment. Science Advances, 2022, 8, eabj9309.	10.3	52
66	Key role of bacteria in the shortâ€ŧerm cycling of carbon at the abyssal seafloor in a low particulate organic carbon flux region of the eastern Pacific Ocean. Limnology and Oceanography, 2019, 64, 694-713.	3.1	50
67	Environmental DNA surveys detect distinct metazoan communities across abyssal plains and seamounts in the western Clarion Clipperton Zone. Molecular Ecology, 2020, 29, 4588-4604.	3.9	50
68	Testing the FOODBANCS hypothesis: Seasonal variations in near-bottom particle flux, bioturbation intensity, and deposit feeding based on 234Th measurements. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 2425-2437.	1.4	49
69	Sediment community structure around a whale skeleton in the deep Northeast Pacific: Macrofaunal, microbial and bioturbation effects. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45, 335-364.	1.4	48
70	Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments. Biogeosciences, 2010, 7, 2129-2145.	3.3	48
71	Bone-eating worms from the Antarctic: the contrasting fate of whale and wood remains on the Southern Ocean seafloor. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131390.	2.6	48
72	Abyssal fauna of the UK-1 polymetallic nodule exploration area, Clarion-Clipperton Zone, central Pacific Ocean: Cnidaria. Biodiversity Data Journal, 2016, 4, e9277.	0.8	46

#	Article	IF	CITATIONS
73	The near future of the deep-sea floor ecosystems. , 2008, , 334-350.		45
74	Pelagic-Benthic Coupling, Food Banks, and Climate Change on the West Antarctic Peninsula Shelf. Oceanography, 2012, 25, 188-201.	1.0	45
75	Systematics and biodiversity of <i>Ophryotrocha < /i> (Annelida, Dorvilleidae) with descriptions of six new species from deep-sea whale-fall and wood-fall habitats in the north-east Pacific. Systematics and Biodiversity, 2012, 10, 243-259.</i>	1.2	44
76	Macrofaunal abundance and composition on the West Antarctic Peninsula continental shelf: Evidence for a sediment †food bank' and similarities to deep-sea habitats. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 2491-2501.	1.4	42
77	The effects of submarine canyons and the oxygen minimum zone on deep-sea fish assemblages off Hawai'i. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 64, 54-70.	1.4	41
78	Editorial: Biodiversity of the Clarion Clipperton Fracture Zone. Marine Biodiversity, 2017, 47, 259-264.	1.0	41
79	Temporal changes in benthic megafaunal abundance and composition across the West Antarctic Peninsula shelf: Results from video surveys. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 2465-2477.	1.4	40
80	Abyssal fauna of the UK-1 polymetallic nodule exploration claim, Clarion-Clipperton Zone, central Pacific Ocean: Echinodermata. Biodiversity Data Journal, 2016, 4, e7251.	0.8	38
81	Implications of population connectivity studies for the design of marine protected areas in the deep sea: An example of a demosponge from the Clarionâ€Clipperton Zone. Molecular Ecology, 2018, 27, 4657-4679.	3.9	37
82	Environment, ecology, and potential effectiveness of an area protected from deep-sea mining (Clarion) Tj ETQqC) 0 0 rgBT	/Overlock 10
83	14C as a tracer of labile organic matter in Antarctic benthic food webs. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 2438-2450.	1.4	35
84	Patterns of Macrofaunal Biodiversity Across the Clarion-Clipperton Zone: An Area Targeted for Seabed Mining. Frontiers in Marine Science, 2021, 8, .	2.5	33
85	Fecundity and embryo development of three Antarctic deep-water scleractinians: Flabellum thouarsii, F. curvatum and F. impensum. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 2527-2534.	1.4	31
86	Observations of organic falls from the abyssal Clarion-Clipperton Zone in the tropical eastern Pacific Ocean. Marine Biodiversity, 2017, 47, 311-321.	1.0	30
87	Using Habitat Classification to Assess Representativity of a Protected Area Network in a Large, Data-Poor Area Targeted for Deep-Sea Mining. Frontiers in Marine Science, 2020, 7, .	2.5	30
88	Recruitment patterns in Antarctic Peninsula shelf sediments: evidence of decoupling from seasonal phytodetritus pulses. Polar Biology, 2007, 30, 587-600.	1.2	28
89	On the role of bone-eating worms in the degradation of marine vertebrate remains. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1959-1961.	2.6	27
90	A new species of <i>Aurospio</i> (Polychaeta, Spionidae) from the Antarctic shelf, with analysis of its ecology, reproductive biology and evolutionary history. Marine Ecology, 2009, 30, 181-197.	1.1	27

#	Article	IF	Citations
91	Larval assemblages over the abyssal plain in the Pacific are highly diverse and spatially patchy. PeerJ, 2019, 7, e7691.	2.0	27
92	Environmental Heterogeneity Throughout the Clarion-Clipperton Zone and the Potential Representativity of the APEI Network. Frontiers in Marine Science, 2021, 8, .	2.5	26
93	Antarctic ecosystem responses following iceâ€shelf collapse and iceberg calving: Science review and future research. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, .	8.1	25
94	A particle introduction experiment in Santa Catalina Basin sediments: Testing the age-dependent mixing hypothesis. Journal of Marine Research, 2001, 59, 97-112.	0.3	23
95	Abyssal near-bottom dispersal stages of benthic invertebrates in the Clarion-Clipperton polymetallic nodule province. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 127, 31-40.	1.4	23
96	Megafauna of the UKSRL exploration contract area and eastern Clarion-Clipperton Zone in the Pacific Ocean: Annelida, Arthropoda, Bryozoa, Chordata, Ctenophora, Mollusca. Biodiversity Data Journal, 2017, 5, e14598.	0.8	22
97	Multiple introns in a deep-sea Annelid (Decemunciger: Ampharetidae) mitochondrial genome. Scientific Reports, 2017, 7, 4295.	3.3	21
98	Insights into the ecological effects of deep ocean CO2enrichment: The impacts of natural CO2venting at Loihi seamount on deep sea scavengers. Journal of Geophysical Research, 2005, 110, .	3.3	20
99	Benthic oxygen fluxes and denitrification rates from high-resolution porewater profiles from the Western Antarctic Peninsula continental shelf. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 2415-2424.	1.4	20
100	New Prionospio and Aurospio Species from the Deep Sea (Annelida: Polychaeta) . Zootaxa, 2016, 4092, 1.	0.5	20
101	Reproductive biology and biochemical composition of the brooding echinoid Amphipneustes lorioli on the Antarctic continental shelf. Marine Biology, 2005, 148, 59-71.	1.5	19
102	Community structure of infaunal macrobenthos around vestimentiferan thickets at the San Clemente cold seep, NE Pacific. Marine Ecology, 2010, 31, 608-621.	1.1	19
103	Molecular taxonomy of <i>Osedax</i> (Annelida: Siboglinidae) in the Southern Ocean. Zoologica Scripta, 2014, 43, 405-417.	1.7	19
104	Can the source–sink hypothesis explain macrofaunal abundance patterns in the abyss? A modelling test. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150193.	2.6	17
105	Data are inadequate to test whale falls as chemosynthetic stepping-stones using network analysis: faunal overlaps do support a stepping-stone role. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171281.	2.6	17
106	From Sea Surface to Seafloor: A Benthic Allochthonous eDNA Survey for the Abyssal Ocean. Frontiers in Marine Science, 2020, 7, .	2.5	17
107	Preface and brief synthesis for the FOODBANCS volume. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 2399-2403.	1.4	16
108	Evaluation of excess ²³⁴ Th activity in sediments as an indicator of food quality for deep-sea deposit feeders. Journal of Marine Research, 2003, 61, 267-284.	0.3	15

#	Article	IF	CITATIONS
109	Variability of Sediment Accumulation Rates in an Antarctic Fjord. Geophysical Research Letters, 2019, 46, 13271-13280.	4.0	15
110	Giant, highly diverse protists in the abyssal Pacific: vulnerability to impacts from seabed mining and potential for recovery. Communicative and Integrative Biology, 2020, 13, 189-197.	1.4	15
111	Xenophyophores (Rhizaria, Foraminifera), including four new species and two new genera, from the western Clarion-Clipperton Zone (abyssal equatorial Pacific). European Journal of Protistology, 2020, 75, 125715.	1.5	14
112	Megafauna of the UKSRL exploration contract area and eastern Clarion-Clipperton Zone in the Pacific Ocean: Echinodermata. Biodiversity Data Journal, 2017, 5, e11794.	0.8	14
113	The morphological diversity of <i>Osedax</i> worm borings (Annelida: Siboglinidae). Journal of the Marine Biological Association of the United Kingdom, 2014, 94, 1429-1439.	0.8	13
114	Hydrography and energetics of a cold subpolar fjord: Andvord Bay, western Antarctic Peninsula. Progress in Oceanography, 2020, 181, 102224.	3.2	13
115	Megafaunal Ecology of the Western Clarion Clipperton Zone. Frontiers in Marine Science, 2021, 8, .	2.5	13
116	Heading to the deep end without knowing how to swim: Do we need deep-seabed mining?. One Earth, 2022, 5, 220-223.	6.8	13
117	Synaphobranchid eel swarms on abyssal seamounts: Largest aggregation of fishes ever observed at abyssal depths. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 167, 103423.	1.4	12
118	Biogeography and Connectivity Across Habitat Types and Geographical Scales in Pacific Abyssal Scavenging Amphipods. Frontiers in Marine Science, 2021, 8, .	2.5	12
119	Editorial: Biodiversity, Connectivity and Ecosystem Function Across the Clarion-Clipperton Zone: A Regional Synthesis for an Area Targeted for Nodule Mining. Frontiers in Marine Science, 2021, 8, .	2.5	12
120	Evidence of Osedaxworm borings in Pliocene ($\hat{a}^1/43\hat{A}$ Ma) whale bone from the Mediterranean. Historical Biology, 2011, , 1-9.	1.4	11
121	Seasonal dynamics of megafauna on the deep West Antarctic Peninsula shelf in response to variable phytodetrital influx. Royal Society Open Science, 2014, 1, 140294.	2.4	11
122	High Abundance of the Epibenthic Trachymedusa Ptychogastria polaris Allman, 1878 (Hydrozoa,) Tj ETQq0 0 0 rg	gBT_/Overlo	ock 10 Tf 50 2
123	The scientific response to Antarctic ice-shelf loss. Nature Climate Change, 2018, 8, 848-851.	18.8	10
124	In vivo marking of shallow-water and deep-sea amphipods by ingestion of bait mixed with fast green. Marine Biology, 1983, 73, 183-192.	1.5	9
125	Report of the workshop Evaluating the nature of midwater mining plumes and their potential effects on midwater ecosystems. Research Ideas and Outcomes, 0, 5, .	1.0	9
126	Benthic megafauna of the western Clarion-Clipperton Zone, Pacific Ocean. ZooKeys, 0, 1113, 1-110.	1.1	9

#	Article	IF	Citations
127	Habitat filtering of bacterioplankton communities above polymetallic nodule fields and sediments in the Clarionâ€Clipperton zone of the Pacific Ocean. Environmental Microbiology Reports, 2018, 10, 113-122.	2.4	8
128	Testing the Seamount Refuge Hypothesis for Predators and Scavengers in the Western Clarion-Clipperton Zone. Frontiers in Marine Science, 2021, 8, .	2.5	8
129	Two new species of Sympagella (Porifera: Hexactinellida: Rossellidae) collected from the Clarion-Clipperton Zone, East Pacific. Zootaxa, 2018, 4466, 152.	0.5	7
130	Bacterial and Archaeal Communities in Polymetallic Nodules, Sediments, and Bottom Waters of the Abyssal Clarion-Clipperton Zone: Emerging Patterns and Future Monitoring Considerations. Frontiers in Marine Science, 2021, 8, .	2.5	6
131	Reply to: Ecological variables for deep-ocean monitoring must include microbiota and meiofauna for effective conservation. Nature Ecology and Evolution, 2021, 5, 30-31.	7.8	5
132	The heterogeneous abyss. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16729-16731.	7.1	4
133	Environmental Protection Requires Accurate Application of Scientific Evidence. Trends in Ecology and Evolution, 2021, 36, 14-15.	8.7	4
134	The Larsen Ice Shelf System, Antarctica (LARISSA): Polar Systems Bound Together, Changing Fast. GSA Today, 2019, 29, 4-10.	2.0	4
135	Trophic ecology surrounding kelp and wood falls in deep Norwegian fjords. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 173, 103553.	1.4	3
136	Reply to comment by Boudreau on: What controls the mixedâ€layer depth in deepâ€sea sediments? The importance of POC flux. Limnology and Oceanography, 2004, 49, 623-624.	3.1	2
137	Larval Dispersal Modeling Suggests Limited Ecological Connectivity Between Fjords on the West Antarctic Peninsula. Integrative and Comparative Biology, 2020, 60, 1369-1385.	2.0	2
138	Using Radiocarbon to Assess the Abundance, Distribution, and Nature of Labile Organic Carbon in Marine Sediments. Global Biogeochemical Cycles, 2021, 35, e2020GB006676.	4.9	2
139	Contrasting Modes of Mitochondrial Genome Evolution in Sister Taxa of Wood-Eating Marine Bivalves (Teredinidae and Xylophagaidae). Genome Biology and Evolution, 2022, 14, .	2.5	2
140	Marine biodiversity: patterns and processes. Eos, 1998, 79, 604-604.	0.1	1
141	Evaluating the effects of regional climate trends along the West Antarctic Peninsula shelf based on the seabed distribution of naturally occurring radioisotopic tracers. Marine Geology, 2020, 429, 106315.	2.1	1
142	Tempo and mode in deep-sea benthic ecology: punctuated equilibrium revisited. The Paleontological Society Special Publications, 1992, 6, 274-274.	0.0	0
143	Elevated species diversity in abyssal gastropods off Newfoundland: the potential role of food supply. Marine Biodiversity, 2011, 41, 537-544.	1.0	0
144	Can whale-fall studies inform human forensics?. Science and Justice - Journal of the Forensic Science Society, 2021, 61, 459-466.	2.1	0