List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4298437/publications.pdf Version: 2024-02-01

	50276	43889
8,756	46	91
citations	h-index	g-index
173	173	7243
docs citations	times ranked	citing authors
	8,756 citations 173 docs citations	8,756 46 citations h-index 173 173 docs citations 173 times ranked

#	Article	IF	CITATIONS
1	Printing Technologies as an Emerging Approach in Gas Sensors: Survey of Literature. Sensors, 2022, 22, 3473.	3.8	20
2	Control over the Surface Properties of Zinc Oxide Powders via Combining Mechanical, Electron Beam, and Thermal Processing. Nanomaterials, 2022, 12, 1924.	4.1	3
3	XPS study of Rh/In2O3 system. Surfaces and Interfaces, 2021, 22, 100794.	3.0	5
4	Ozone Sensing by In2O3 Films Modified with Rh: Dimension Effect. Sensors, 2021, 21, 1886.	3.8	5
5	Thermal Transport Evolution Due to Nanostructural Transformations in Ga-Doped Indium-Tin-Oxide Thin Films. Nanomaterials, 2021, 11, 1126.	4.1	3
6	Electrospun Metal Oxide Nanofibers and Their Conductometric Gas Sensor Application. Part 2: Gas Sensors and Their Advantages and Limitations. Nanomaterials, 2021, 11, 1555.	4.1	21
7	Electrospun Metal Oxide Nanofibers and Their Conductometric Gas Sensor Application. Part 1: Nanofibers and Features of Their Forming. Nanomaterials, 2021, 11, 1544.	4.1	15
8	The Ti wire functionalized with inherent TiO2 nanotubes by anodization as one-electrode gas sensor: A proof-of-concept study. Sensors and Actuators B: Chemical, 2020, 306, 127615.	7.8	22
9	Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitations. Part 1: 1D and 2D Nanostructures. Nanomaterials, 2020, 10, 1392.	4.1	79
10	Acid-base properties of the surface of zinc oxide powders subjected to milling in the attritor. Journal of Physics: Conference Series, 2020, 1658, 012042.	0.4	0
11	How to Improve the Performance of Porous Siliconâ€Based Gas and Vapor Sensors? Approaches and Achievements. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900348.	1.8	22
12	Morphological engineering of \$\$hbox {SnO}_{2}\$\$ and \$\$hbox {In}_{2}hbox {O}_{3}\$\$ films deposited by spray pyrolysis. Bulletin of Materials Science, 2019, 42, 1.	1.7	1
13	The role of Rh dispersion in gas sensing effects observed in SnO2 thin films. Materials Chemistry and Physics, 2019, 232, 160-168.	4.0	8
14	Black Phosphorus-New Nanostructured Material for Humidity Sensors: Achievements and Limitations. Sensors, 2019, 19, 1010.	3.8	26
15	Kinetic approach to receptor function in chemiresistive gas sensor modeling of tin dioxide. Steady state consideration. Sensors and Actuators B: Chemical, 2018, 259, 443-454.	7.8	10
16	In ₂ O ₃ - and SnO ₂ -based Ozone Sensors: Design and Characterization. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 83-132.	12.3	31
17	XPS study of the SnO ₂ films modified with Rh. Surface and Interface Analysis, 2018, 50, 795-801.	1.8	9
18	In2O3-Based Thermoelectric Materials: The State of the Art and the Role of Surface State in the Improvement of the Efficiency of Thermoelectric Conversion, Crystals, 2018, 8, 14	2.2	28

#	Article	IF	CITATIONS
19	Modelling and HRTEM computer simulation of facetting of SnO2 nanostructures deposited by spray pyrolysis on glass substrates. , 2018, , 79-82.		0
20	Spray pyrolysis deposition of undoped SnO2 and In2O3 films and their structural properties. Progress in Crystal Growth and Characterization of Materials, 2017, 63, 1-47.	4.0	32
21	Surface functionalization by gold nanoparticles and its prospects for application in conductometric metal oxide gas sensors. AIP Conference Proceedings, 2017, , .	0.4	0
22	Ultra-low thermal conductivity of nanogranular indium tin oxide films deposited by spray pyrolysis. Applied Physics Letters, 2017, 110, .	3.3	32
23	Interference effects between hydrogen and ozone in the response of SnO2-based gas sensors. Sensors and Actuators B: Chemical, 2017, 243, 507-515.	7.8	9
24	Metal oxide composites in conductometric gas sensors: Achievements and challenges. Sensors and Actuators B: Chemical, 2017, 244, 182-210.	7.8	397
25	Structural Features of Silica Coating Obtained from Sol Cooled to the Temperature of Liquid Nitrogen. Arabian Journal for Science and Engineering, 2017, 42, 4299-4305.	3.0	7
26	In ₂ O ₃ - and SnO ₂ -Based Thin Film Ozone Sensors: Fundamentals. Journal of Sensors, 2016, 2016, 1-31.	1.1	55
27	Carbon 1s photoemission line analysis of C-based adsorbate on (111)In2O3 surface: The influence of reducing and oxidizing conditions. Applied Surface Science, 2016, 390, 897-902.	6.1	5
28	Nanoscaled In2O3:Sn films as material for thermoelectric conversion: achievements and limitations. Bulletin of Materials Science, 2016, 39, 1349-1354.	1.7	1
29	Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review. Mikrochimica Acta, 2016, 183, 1033-1054.	5.0	135
30	Gas-sensing properties of In2O3 films modified with gold nanoparticles. Materials Chemistry and Physics, 2016, 175, 188-199.	4.0	20
31	Thermoelectric properties of nano-granular indium–tin-oxide within modified electron filtering model with chemisorption-type potential barriers. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 81, 49-58.	2.7	9
32	In 2 O 3 -based multicomponent metal oxide films and their prospects for thermoelectric applications. Solid State Sciences, 2016, 52, 141-148.	3.2	18
33	Porous Silicon Characterization and Application: General View. , 2015, , 3-26.		1
34	Silicon Porosification: Approaches to PSi Parameters Control. , 2015, , 73-126.		0
35	SYNTHESIS OF METAL OXIDE-BASED NANOCOMPOSITES AND MULTICOMPONENT COMPOUNDS USING LAYER-BY-LAYER METHOD AND PROSPECTS FOR THEIR APPLICATION. Jurnal Teknologi (Sciences and) Tj ETQq1 1	00784314	rgBT /Overl
36	What restricts gold clusters reactivity in catalysis and gas sensing effects: A focused review. Materials Letters, 2015, 147, 101-104.	2.6	12

#	Article	IF	CITATIONS
37	The influence of gold nanoparticles on the conductivity response of SnO2-based thin film gas sensors. Applied Surface Science, 2015, 353, 793-803.	6.1	43
38	In2O3:Ca and In2O3:P-based one-electrode gas sensors: Comparative study. Ceramics International, 2015, 41, 7478-7488.	4.8	14
39	SnO ₂ Films Decorated by Au Clusters and their Gas Sensing Properties. Materials Science Forum, 2015, 827, 251-256.	0.3	10
40	Photoemission surface characterization of (001) In2O3 thin film through the interactions with oxygen, water and carbon monoxide: Comparison with (111) orientation. Applied Surface Science, 2015, 324, 123-133.	6.1	19
41	Solid State Gas and Vapor Sensors Based on Porous Silicon. , 2015, , 3-43.		0
42	Synthesis by successive ionic layer deposition (SILD) methodology and characterization of gold nanoclusters on the surface of tin and indium oxide films. Pure and Applied Chemistry, 2014, 86, 801-817.	1.9	20
43	Technologies Suitable for Gas Sensor Fabrication. Integrated Analytical Systems, 2014, , 393-433.	0.4	1
44	Catalytically Active Filters Deposited by SILD Method for Inhibiting Sensitivity to Ozone of SnO2-Based Conductometric Gas Sensors. Ferroelectrics, 2014, 459, 46-51.	0.6	13
45	Metal Oxide-Based Nanostructures. Integrated Analytical Systems, 2014, , 47-71.	0.4	2
46	Thermoelectrical properties of spray pyrolyzed indium oxide thin films doped by tin. Thin Solid Films, 2014, 552, 225-231.	1.8	37
47	Engineering approaches to improvement of conductometric gas sensor parameters. Part 2: Decrease of dissipated (consumable) power and improvement stability and reliability. Sensors and Actuators B: Chemical, 2014, 198, 316-341.	7.8	89
48	Bulk doping influence on the response of conductometric SnO2 gas sensors: Understanding through cathodoluminescence study. Sensors and Actuators B: Chemical, 2014, 196, 80-98.	7.8	35
49	Handbook of Gas Sensor Materials. Integrated Analytical Systems, 2014, , .	0.4	48
50	In ₂ O ₃ -Based Thin Films Deposited by Spray Pyrolysis as Promising Thermoelectric Material. Advanced Materials Research, 2014, 1043, 40-44.	0.3	1
51	Material and Structural Engineering of Metal Oxides Aimed for Gas Sensor Applications. Advanced Materials Research, 2014, 974, 76-85.	0.3	2
52	Metal Oxide-Based Nanocomposites for Conductometric Gas Sensors. Integrated Analytical Systems, 2014, , 197-207.	0.4	2
53	The Role of Temporal and Thermal Stability in Sensing Material Selection. Integrated Analytical Systems, 2014, , 243-248.	0.4	0
54	Outlook: Sensing Material Selection Guide. Integrated Analytical Systems, 2014, , 435-440.	0.4	0

4

#	Article	IF	CITATIONS
55	Bulk Doping of Metal Oxides. Integrated Analytical Systems, 2014, , 323-340.	0.4	0
56	Technological Limitations in Sensing Material Applications. Integrated Analytical Systems, 2014, , 387-392.	0.4	0
57	Instability of Metal Oxide Parameters and Approaches to Their Stabilization. Integrated Analytical Systems, 2014, , 265-300.	0.4	0
58	Temporal Stability of Porous Silicon. Integrated Analytical Systems, 2014, , 311-319.	0.4	0
59	SnO2:Cu films doped during spray pyrolysis deposition: The reasons ofÂthe gas sensing properties change. Materials Chemistry and Physics, 2013, 142, 124-131.	4.0	11
60	Engineering approaches for the improvement of conductometric gas sensor parameters. Sensors and Actuators B: Chemical, 2013, 188, 709-728.	7.8	193
61	Handbook of Gas Sensor Materials. Integrated Analytical Systems, 2013, , .	0.4	140
62	Metal Oxides. Integrated Analytical Systems, 2013, , 49-116.	0.4	1
63	Semiconductors in Gas Sensors. Integrated Analytical Systems, 2013, , 167-195.	0.4	4
64	Surface Modifiers for Metal Oxides in Conductometric Gas Sensors. Integrated Analytical Systems, 2013, , 273-286.	0.4	2
65	Filters in Gas Sensors. Integrated Analytical Systems, 2013, , 293-303.	0.4	0
66	In <inf>2</inf> O <inf>3</inf> :Ga-based Ceramics: Advantages and shortcomings for application in one-electrode gas sensors. , 2013, , .		1
67	The role of doping effect on the response of SnO2-based thin film gas sensors: Analysis based on the results obtained for Co-doped SnO2 films deposited by spray pyrolysis. Sensors and Actuators B: Chemical, 2013, 182, 112-124.	7.8	96
68	Spay Pyrolyzed Nanostructured Tin Dioxide Thin Films Doped by Cobalt: Correlation between Structural and Gas Sensing Characteristics. Applied Mechanics and Materials, 2013, 377, 180-185.	0.2	0
69	Materials for Electrochemical Gas Sensors with Liquid and Polymer Electrolytes. Integrated Analytical Systems, 2013, , 353-364.	0.4	1
70	Solid Electrolytes for Detecting Specific Gases. Integrated Analytical Systems, 2013, , 197-220.	0.4	1
71	Material Design for Metal Oxide Chemiresistive Gas Sensors. Journal of Sensor Science and Technology, 2013, 22, 1-17.	0.2	30

72 Chemical Sensors Simulation and Modeling Volume 4: Optical Sensors. , 2013, , .

5

#	Article	IF	CITATIONS
73	Humidity-Sensitive Materials. Integrated Analytical Systems, 2013, , 389-408.	0.4	0
74	Electrodes and Heaters in MOX-Based Gas Sensors. Integrated Analytical Systems, 2013, , 255-271.	0.4	0
75	Materials for Capacitance-Based Gas Sensors. Integrated Analytical Systems, 2013, , 365-376.	0.4	0
76	The Role of Grain Size in Response of SnO ₂ - and In ₂ O ₃ -Based Conductometric Gas Sensors. Advanced Materials Research, 2012, 486, 153-159.	0.3	5
77	The role of grain size on the thermal instability of nanostructured metal oxides used in gas sensor applications and approaches for grain-size stabilization. Progress in Crystal Growth and Characterization of Materials, 2012, 58, 167-208.	4.0	75
78	Indium oxide ceramics doped by selenium for one-electrode gas sensors. Sensors and Actuators B: Chemical, 2012, 174, 586-593.	7.8	9
79	Ozone measuring: What can limit application of SnO2-based conductometric gas sensors?. Sensors and Actuators B: Chemical, 2012, 161, 28-44.	7.8	98
80	Gas sensor application of Ag nanoclusters synthesized by SILD method. Sensors and Actuators B: Chemical, 2012, 166-167, 402-410.	7.8	37
81	Chemical Sensors: Simulation and Modeling Vol 2: Conductometric-Type Sensors. , 2012, , .		7
82	Luminescence properties of doped SnO2powders and films designed for gas sensor application. IOP Conference Series: Materials Science and Engineering, 2011, 18, 212008.	0.6	2
83	SnO2–Au nanocomposite synthesized by successive ionic layer deposition method: Characterization and application in gas sensors. Materials Chemistry and Physics, 2011, 128, 433-441.	4.0	28
84	Ag nanoclusters synthesized by successive ionic layer deposition method and their characterization. Journal of Materials Science, 2011, 46, 4555-4561.	3.7	20
85	Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey). Sensors and Actuators B: Chemical, 2011, 156, 527-538.	7.8	267
86	The Role of the Film Thickness in Sensor Response of the SnO2-Based Devices. Sensor Letters, 2011, 9, 364-368.	0.4	3
87	Porous Semiconductors: Advanced Material for Gas Sensor Applications. Critical Reviews in Solid State and Materials Sciences, 2010, 35, 1-37.	12.3	98
88	Photoconductivity in In2O3 nanoscale thin films: Interrelation with chemisorbed-type conductometric response towards oxygen. Sensors and Actuators B: Chemical, 2010, 148, 427-438.	7.8	30
89	Cathodoluminescence studies of un-doped and (Cu, Fe, and Co)-doped tin dioxide films deposited by spray pyrolysis. Current Applied Physics, 2010, 10, 1123-1131.	2.4	24
90	SnO ₂ -Based Thin Film Gas Sensors with Functionalized Surface. Advanced Materials Research, 2010, 93-94, 145-148.	0.3	1

#	Article	IF	CITATIONS
91	Ag nanoclusters synthesized by SILD method: Characterization and applications. , 2010, , .		1
92	Grain Size Effects in Structural Stability of SnO2 and In2O3 Films Aimed for Gas Sensor Applications. , 2010, , .		1
93	Silicon Porosification: State of the Art. Critical Reviews in Solid State and Materials Sciences, 2010, 35, 153-260.	12.3	128
94	(Cu, Fe, Co, or Ni)-doped tin dioxide films deposited by spray pyrolysis: Doping influence on thermal stability of the film structure. Materials Chemistry and Physics, 2009, 113, 756-763.	4.0	47
95	Thin film SnO2-based gas sensors: Film thickness influence. Sensors and Actuators B: Chemical, 2009, 142, 321-330.	7.8	131
96	Ozone sensors based on SnO2 films modified by SnO2–Au nanocomposites synthesized by the SILD method. Sensors and Actuators B: Chemical, 2009, 138, 512-517.	7.8	36
97	SnO2 thin films modified by the SnO2–Au nanocomposites: Response to reducing gases. Sensors and Actuators B: Chemical, 2009, 141, 610-616.	7.8	30
98	Grain Size Effects in Sensor Response of Nanostructured SnO ₂ - and In ₂ O ₃ -Based Conductometric Thin Film Gas Sensor. Critical Reviews in Solid State and Materials Sciences, 2009, 34, 1-17.	12.3	149
99	Review of Electrochemical Hydrogen Sensors. Chemical Reviews, 2009, 109, 1402-1433.	47.7	390
100	Structural characterization and phase transformations in metal oxide films synthesized by successive ionic layer deposition (SILD) method. Processing and Application of Ceramics, 2009, 3, 19-28.	0.8	13
101	Comparative Study of SnO2- and In2O3-based Ozone Sensors. ECS Transactions, 2008, 6, 29-41.	0.5	17
102	(Cu, Fe, Co, or Ni)-doped tin dioxide films deposited by spray pyrolysis: doping influence on film morphology. Journal of Materials Science, 2008, 43, 2761-2770.	3.7	47
103	The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Materials Science and Engineering Reports, 2008, 61, 1-39.	31.8	500
104	Valence band and band gap photoemission study of (111) In2O3 epitaxial films under interactions with oxygen, water and carbon monoxide. Surface Science, 2007, 601, 5585-5594.	1.9	26
105	Cathodoluminescence emission study of nanocrystalline indium oxide films deposited by spray pyrolysis. Thin Solid Films, 2007, 515, 8065-8071.	1.8	10
106	Metal oxides for solid-state gas sensors: What determines our choice?. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 139, 1-23.	3.5	1,313
107	The influence of additives on gas sensing and structural properties of In2O3-based ceramics. Sensors and Actuators B: Chemical, 2007, 120, 657-664.	7.8	47
108	Ozone sensors on the base of SnO2 films deposited by spray pyrolysis. Sensors and Actuators B: Chemical, 2007, 120, 679-686.	7.8	86

#	Article	IF	CITATIONS
109	Practical aspects in design of one-electrode semiconductor gas sensors: Status report. Sensors and Actuators B: Chemical, 2007, 121, 664-678.	7.8	117
110	The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response. Sensors and Actuators B: Chemical, 2007, 128, 51-63.	7.8	68
111	Effect of air humidity on gas response of SnO2 thin film ozone sensors. Sensors and Actuators B: Chemical, 2007, 122, 519-526.	7.8	95
112	Kinetics of indium oxide-based thin film gas sensor response: The role of "redox―and adsorption/desorption processes in gas sensing effects. Thin Solid Films, 2007, 515, 3987-3996.	1.8	76
113	Successive ionic layer deposition (SILD) as a new sensor technology: synthesis and modification of metal oxides. Measurement Science and Technology, 2006, 17, 1861-1869.	2.6	36
114	Radiation effects in SnO2–Si sensor structures. Radiation Effects and Defects in Solids, 2006, 161, 85-89.	1.2	4
115	Cathodoluminescence study of SnO2 powders aimed for gas sensor applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 130, 200-205.	3.5	15
116	XPS and TPD study of Rh/SnO2 system – Reversible process of substrate oxidation and reduction. Surface Science, 2006, 600, 4233-4238.	1.9	46
117	Successive ionic layer deposition: possibilities for gas sensor applications. Journal of Physics: Conference Series, 2005, 15, 45-50.	0.4	6
118	Synchrotron radiation photoemission study of indium oxide surface prepared by spray pyrolysis method. Applied Surface Science, 2005, 243, 335-344.	6.1	28
119	Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sensors and Actuators B: Chemical, 2005, 107, 209-232.	7.8	628
120	Faceting characterization of tin dioxide nanocrystals deposited by spray pyrolysis from stannic chloride water solution. Thin Solid Films, 2005, 471, 310-319.	1.8	78
121	Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing. Thin Solid Films, 2005, 479, 38-51.	1.8	137
122	Experimental and theoretical studies of indium oxide gas sensors fabricated by spray pyrolysis. Sensors and Actuators B: Chemical, 2005, 106, 563-571.	7.8	94
123	Distinguishing feature of metal oxide films' structural engineering for gas sensor applications. Journal of Physics: Conference Series, 2005, 15, 256-261.	0.4	16
124	Mechanism of the Oxygen Interaction with a Surface of Thin Nanosized Metal Oxide Film. Materials Research Society Symposia Proceedings, 2004, 828, 270.	0.1	0
125	Rational Synthesis and Optimization of Multifunctional Solid-State Gas Sensors. Materials Research Society Symposia Proceedings, 2004, 828, 147.	0.1	0
126	Surface Plasma Treatment and Sensibilization of Tin Dioxide Films for Enhancement of Gas Sensitivity and Selectivity. Materials Research Society Symposia Proceedings, 2004, 828, 203.	0.1	1

#	Article	IF	CITATIONS
127	Synthesis of nanolayers hydroxo-(SnxOyHz) and heteropoly-(HxPWyOz) compounds of hybrid-type on silica surfaces by successive ionic layer deposition method. Applied Surface Science, 2004, 221, 197-202.	6.1	12
128	The influence of film structure on In2O3 gas response. Thin Solid Films, 2004, 460, 315-323.	1.8	155
129	Influence of Cu-, Fe-, Co-, and Mn-oxide nanoclusters on sensing behavior of SnO2 films. Thin Solid Films, 2004, 467, 209-214.	1.8	73
130	In2O3 films deposited by spray pyrolysis as a material for ozone gas sensors. Sensors and Actuators B: Chemical, 2004, 99, 297-303.	7.8	117
131	Kinetics of gas response to reducing gases of SnO2 films, deposited by spray pyrolysis. Sensors and Actuators B: Chemical, 2004, 98, 41-45.	7.8	96
132	In2O3 films deposited by spray pyrolysis: gas response to reducing (CO, H2) gases. Sensors and Actuators B: Chemical, 2004, 98, 122-129.	7.8	73
133	Gas-sensing characteristics of one-electrode gas sensors based on doped In2O3 ceramics. Sensors and Actuators B: Chemical, 2004, 103, 13-22.	7.8	60
134	Acceptor-like behavior of reducing gases on the surface of n-type In2O3. Applied Surface Science, 2004, 227, 122-131.	6.1	61
135	Evolución de la morfologÃa y facetaje de nanoestructuras de SnO ₂ crecidas por pirólisis en fase aerosol sobre sustratos de vidrio. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2004, 43, 510-513.	1.9	1
136	Structural and gas response characterization of nano-size SnO2 films deposited by SILD method. Sensors and Actuators B: Chemical, 2003, 96, 602-609.	7.8	62
137	Influence of surface Pd doping on gas sensing characteristics of SnO2 thin films deposited by spray pirolysis. Thin Solid Films, 2003, 436, 119-126.	1.8	133
138	Investigation of behaviour of Rh deposited onto polycrystalline SnO2 by means of TPD, AES and EELS. Surface Science, 2003, 532-535, 415-419.	1.9	13
139	Study of Pd–In interaction during Pd deposition on pyrolytically prepared In2O3. Applied Surface Science, 2003, 205, 196-205.	6.1	38
140	NANO-SIZE SnO ₂ FILMS DEPOSITED BY SILD METHOD: STRUCTURAL AND GAS RESPONSE CHARACTERIZATION. , 2003, , .		0
141	Using of SILD technology for surface modification of SnO2 films for gas sensor applications. Materials Research Society Symposia Proceedings, 2002, 750, 1.	0.1	4
142	Crystallographic characterization of In2O3 films deposited by spray pyrolysis. Sensors and Actuators B: Chemical, 2002, 84, 37-42.	7.8	39
143	Possibilities of aerosol technology for deposition of SnO2-based films with improved gas sensing characteristics. Materials Science and Engineering C, 2002, 19, 73-77.	7.3	55
144	Morphological rank of nano-scale tin dioxide films deposited by spray pyrolysis from SnCl4·5H2O water solution. Thin Solid Films, 2002, 408, 51-58.	1.8	72

#	Article	IF	CITATIONS
145	Factors influencing the gas sensing characteristics of tin dioxide films deposited by spray pyrolysis: understanding and possibilities of control. Thin Solid Films, 2001, 391, 167-175.	1.8	101
146	CO adsorption on Pd clusters deposited on pyrolytically prepared SnO2 studied by XPS. Vacuum, 2001, 61, 129-134.	3.5	24
147	Peculiarities of SnO2 thin film deposition by spray pyrolysis for gas sensor application. Sensors and Actuators B: Chemical, 2001, 77, 244-252.	7.8	155
148	Structural characterization of SnO2 gas sensing films deposited by spray pyrolysis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 77, 33-39.	3.5	53
149	Electrical behavior of SnO2 thin films in humid atmosphere. Sensors and Actuators B: Chemical, 1999, 54, 197-201.	7.8	95
150	Processes development for low cost and low power consuming SnO2 thin film gas sensors (TFGS). Sensors and Actuators B: Chemical, 1999, 54, 202-209.	7.8	41
151	SnO2 thin film gas sensors for fire-alarm systems. Sensors and Actuators B: Chemical, 1999, 54, 191-196.	7.8	18
152	Simulation of thin film gas sensors kinetics. Sensors and Actuators B: Chemical, 1999, 61, 143-153.	7.8	73
153	Diffusion processes at the W - InP interface. Semiconductor Science and Technology, 1996, 11, 1402-1404.	2.0	1
154	Effect of donor-acceptor complex dissociation of the properties of the surface boundary region in P-InP:Zn during its thermal oxidation. Journal of Physics and Chemistry of Solids, 1985, 46, 3-8.	4.0	0
155	Device for automatically measuring the temperature dependences of electrical conductivity, Hall coefficient, and magneto-resistance of semiconductors. Measurement Techniques, 1979, 22, 196-198.	0.6	ο
156	Processes controlling the rate of In/sub 2/O/sub 3/ thin film gas sensor's response. , 0, , .		1
157	Spray Pyrolysis of Metal Oxides SnO ₂ and In ₂ O ₃ as an Example of Thin Film Technology: Advantages and Limitations for Application in Conductometric Gas Sensors. Advanced Materials Research, 0, 748, 22-27.	0.3	16
158	Thin Film SnO ₂ and In ₂ O ₃ Ozone Sensor Design: The Film Parameters Selection. Applied Mechanics and Materials, 0, 799-800, 910-914.	0.2	1
159	Metal Oxide Nanocomposites: Advantages and Shortcomings for Application in Conductometric Gas Sensors. Materials Science Forum, 0, 872, 223-229.	0.3	5
160	Metal Oxides for Application in Conductometric Gas Sensors: How to Choose?. Solid State Phenomena, 0, 266, 187-195.	0.3	18
161	Materials Acceptable for Gas Sensor Design: Advantages and Limitations. Key Engineering Materials, 0, 780, 80-89.	0.4	20