
Paul A Davies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4298148/publications.pdf Version: 2024-02-01

Ρλιμ Δ Πλνιές

#	Article	IF	CITATIONS
1	Preventing Phosphorylation of the GABAAR β3 Subunit Compromises the Behavioral Effects of Neuroactive Steroids. Frontiers in Molecular Neuroscience, 2022, 15, 817996.	2.9	4
2	Delineation of the functional properties exhibited by the Zinc-Activated Channel (ZAC) and its high-frequency Thr128Ala variant (rs2257020) in Xenopus oocytes. Pharmacological Research, 2021, 169, 105653.	7.1	3
3	Discovery and functional characterization of N-(thiazol-2-yl)-benzamide analogs as the first class of selective antagonists of the Zinc-Activated Channel (ZAC). Biochemical Pharmacology, 2021, 193, 114782.	4.4	2
4	Probing the molecular basis for signal transduction through the Zinc-Activated Channel (ZAC). Biochemical Pharmacology, 2021, 193, 114781.	4.4	4
5	KCC2 is required for the survival of mature neurons but not for their development. Journal of Biological Chemistry, 2021, 296, 100364.	3.4	15
6	Isolation and Characterization of Multi-Protein Complexes Enriched in the K-Cl Co-transporter 2 From Brain Plasma Membranes. Frontiers in Molecular Neuroscience, 2020, 13, 563091.	2.9	15
7	Preclinical characterization of zuranolone (SAGE-217), a selective neuroactive steroid GABAA receptor positive allosteric modulator. Neuropharmacology, 2020, 181, 108333.	4.1	65
8	Identification of a Core Amino Acid Motif within the α Subunit of GABAARs that Promotes Inhibitory Synaptogenesis and Resilience to Seizures. Cell Reports, 2019, 28, 670-681.e8.	6.4	16
9	Metabotropic, but not allosteric, effects of neurosteroids on GABAergic inhibition depend on the phosphorylation of GABAA receptors. Journal of Biological Chemistry, 2019, 294, 12220-12230.	3.4	32
10	Neuroactive Steroids Reverse Tonic Inhibitory Deficits in Fragile X Syndrome Mouse Model. Frontiers in Molecular Neuroscience, 2019, 12, 15.	2.9	16
11	Pharmacological Characterization of the Zinc-Activated Channel: A Cys-Loop Receptor Gated by Zn2+, Cu2+ And Protons. Biophysical Journal, 2019, 116, 396a.	0.5	0
12	Inhibitory Synapse Formation at the Axon Initial Segment. Frontiers in Molecular Neuroscience, 2019, 12, 266.	2.9	10
13	The small molecule CLP257 does not modify activity of the K+–Clâ^ co-transporter KCC2 but does potentiate GABAA receptor activity. Nature Medicine, 2017, 23, 1394-1396.	30.7	47
14	Endogenous and synthetic neuroactive steroids evoke sustained increases in the efficacy of GABAergic inhibition via a protein kinaseÂC-dependent mechanism. Neuropharmacology, 2017, 113, 314-322.	4.1	56
15	Proteomic Characterization of Inhibitory Synapses Using a Novel pHluorin-tagged γ-Aminobutyric Acid Receptor, Type A (GABAA), α2 Subunit Knock-in Mouse. Journal of Biological Chemistry, 2016, 291, 12394-12407.	3.4	68
16	Compromising KCC2 transporter activity enhances the development of continuous seizure activity. Neuropharmacology, 2016, 108, 103-110.	4.1	42
17	Regulating the Efficacy of Inhibition Through Trafficking of Î ³ -Aminobutyric Acid Type A Receptors. Anesthesia and Analgesia, 2016, 123, 1220-1227.	2.2	5
18	Copper and protons directly activate the zinc-activated channel. Biochemical Pharmacology, 2016, 103, 109-117.	4.4	16

PAUL A DAVIES

#	Article	IF	CITATIONS
19	KCC2 activity is critical in limiting the onset and severity of status epilepticus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3523-3528.	7.1	139
20	Compromising the phosphodependent regulation of the GABA _A R β3 subunit reproduces the core phenotypes of autism spectrum disorders. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14805-14810.	7.1	41
21	GABAA Receptor Genetics and Clinical Pharmacology. Current Anesthesiology Reports, 2014, 4, 42-48.	2.0	3
22	Neural circuits with long-distance axon tracts for determining functional connectivity. Journal of Neuroscience Methods, 2014, 222, 82-90.	2.5	14
23	Phosphorylation of GABAA receptors influences receptor trafficking and neurosteroid actions. Psychopharmacology, 2014, 231, 3453-3465.	3.1	47
24	Neurosteroids promote phosphorylation and membrane insertion of extrasynaptic GABA _A receptors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7132-7137.	7.1	95
25	Disrupted Cl ^{â^'} homeostasis contributes to reductions in the inhibitory efficacy of diazepam during hyperexcited states. European Journal of Neuroscience, 2013, 38, 2453-2467.	2.6	32
26	Enhanced Tonic Inhibition Influences the Hypnotic and Amnestic Actions of the Intravenous Anesthetics Etomidate and Propofol. Journal of Neuroscience, 2013, 33, 7264-7273.	3.6	31
27	Functional regulation of GABAA receptors in nervous system pathologies. Current Opinion in Neurobiology, 2012, 22, 552-558.	4.2	114
28	Memory Deficits Induced by Inflammation Are Regulated by α5-Subunit-Containing GABAA Receptors. Cell Reports, 2012, 2, 488-496.	6.4	147
29	Allosteric modulation of the 5-HT3 receptor. Current Opinion in Pharmacology, 2011, 11, 75-80.	3.5	45
30	NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor–mediated currents. Nature Neuroscience, 2011, 14, 736-743.	14.8	268
31	Hyperpolarizing GABAergic transmission depends on KCC2 function and membrane potential. Channels, 2011, 5, 475-481.	2.8	16
32	The Residence Time of GABA _A Rs at Inhibitory Synapses Is Determined by Direct Binding of the Receptor α1 Subunit to Gephyrin. Journal of Neuroscience, 2011, 31, 14677-14687.	3.6	134
33	Highâ€level expression and purification of Cysâ€loop ligandâ€gated ion channels in a tetracyclineâ€inducible stable mammalian cell line: GABA _A and serotonin receptors. Protein Science, 2010, 19, 1728-1738.	7.6	40
34	Ethanol Stabilizes the Open State of Single 5-Hydroxytryptamine3A(QDA) Receptors. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 896-902.	2.5	9
35	Protein Kinase C Phosphorylation Regulates Membrane Insertion of GABAA Receptor Subtypes That Mediate Tonic Inhibition. Journal of Biological Chemistry, 2010, 285, 41795-41805.	3.4	87
36	3B but which 3B? And that's just one of the questions: the heterogeneity of human 5-HT3 receptors. Trends in Pharmacological Sciences, 2008, 29, 437-444.	8.7	67

PAUL A DAVIES

#	Article	IF	CITATIONS
37	High-frequency <i>HTR3B</i> variant associated with major depression dramatically augments the signaling of the human 5-HT _{3AB} receptor. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 722-727.	7.1	72
38	Characterization of the effects of four HTR3B polymorphisms on human 5-HT3AB receptor expression and signalling. Pharmacogenetics and Genomics, 2008, 18, 1027-1040.	1.5	8
39	Differential Effects of Serotonin and Dopamine on Human 5-HT _{3A} Receptor Kinetics: Interpretation within an Allosteric Kinetic Model. Journal of Neuroscience, 2007, 27, 13151-13160.	3.6	46
40	Molecular Properties Important for Inhaled Anesthetic Action on Human 5-HT3A Receptors. Anesthesia and Analgesia, 2005, 100, 1696-1703.	2.2	40
41	Modulation of Human 5-Hydroxytryptamine Type 3AB Receptors by Volatile Anesthetics and n-Alcohols. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 338-345.	2.5	50
42	General Anesthetic-Induced Channel Gating Enhancement of 5-Hydroxytryptamine Type 3 Receptors Depends on Receptor Subunit Composition. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 771-776.	2.5	52
43	5-HT3A receptor kinetics: Agonist and anesthetic action. International Congress Series, 2005, 1283, 247-250.	0.2	0
44	General anesthetic action on 5-HT3 receptors: Influence of subunit composition. International Congress Series, 2005, 1283, 79-84.	0.2	0
45	Introduction of the 5-HT3B subunit alters the functional properties of 5-HT3 receptors native to neuroblastoma cells. Neuropharmacology, 2003, 44, 214-223.	4.1	55
46	A Novel Class of Ligand-gated Ion Channel Is Activated by Zn2+. Journal of Biological Chemistry, 2003, 278, 712-717.	3.4	130
47	Alternative transcripts of the GABAA receptor ε subunit in human and rat. Neuropharmacology, 2002, 43, 467-475.	4.1	18
48	Evidence for Expression of Heteromeric Serotonin 5-HT3 Receptors in Rodents. Journal of Neurochemistry, 2001, 75, 240-247.	3.9	82
49	Evidence for the formation of functionally distinct αβγε GABA A receptors. Journal of Physiology, 2001, 537, 101-113.	2.9	35
50	The influence of an endogenous β3 subunit on recombinant GABAA receptor assembly and pharmacology in WSS-1 cells and transiently transfected HEK293 cells. Neuropharmacology, 2000, 39, 611-620.	4.1	22
51	The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature, 1999, 397, 359-363.	27.8	559
52	Modulation by general anaesthetics of rat GABAA receptors comprised of α 1β 3 and β 3 subunits expressed in human embryonic kidney 293 cells. British Journal of Pharmacology, 1997, 120, 899-909.	5.4	88
53	Insensitivity to anaesthetic agents conferred by a class of GABAA receptor subunit. Nature, 1997, 385, 820-823.	27.8	392