
Liuqin Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4297961/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unconventional microbial mechanisms for the key factors influencing inorganic nitrogen removal in stormwater bioretention columns. Water Research, 2022, 209, 117895.	11.3	9
2	A critical review of mineral–microbe interaction and co-evolution: mechanisms and applications. National Science Review, 2022, 9, .	9.5	86
3	Onshore soil microbes and endophytes respond differently to geochemical and mineralogical changes in the Aral Sea. Science of the Total Environment, 2021, 765, 142675.	8.0	9
4	Microbial diversity accumulates in a downstream direction in the Three Gorges Reservoir. Journal of Environmental Sciences, 2021, 101, 156-167.	6.1	20
5	Molecular Determination of Organic Adsorption Sites on Smectite during Fe Redox Processes Using ToF-SIMS Analysis. Environmental Science & amp; Technology, 2021, 55, 7123-7134.	10.0	8
6	Distribution of Hydrogen-Producing Bacteria in Tibetan Hot Springs, China. Frontiers in Microbiology, 2021, 12, 569020.	3.5	4
7	Correlative surface imaging reveals chemical signatures for bacterial hotspots on plant roots. Analyst, The, 2020, 145, 393-401.	3.5	15
8	Mutual Interactions between Reduced Fe-Bearing Clay Minerals and Humic Acids under Dark, Oxygenated Conditions: Hydroxyl Radical Generation and Humic Acid Transformation. Environmental Science & Technology, 2020, 54, 15013-15023.	10.0	79
9	Potential utilization of terrestrially derived dissolved organic matter by aquatic microbial communities in saline lakes. ISME Journal, 2020, 14, 2313-2324.	9.8	64
10	Role of clay-associated humic substances in catalyzing bioreduction of structural Fe(III) in nontronite by Shewanella putrefaciens CN32. Science of the Total Environment, 2020, 741, 140213.	8.0	19
11	Coupling quinoline degradation with Fe redox in clay minerals: A strategy integrating biological and physicochemical processes. Applied Clay Science, 2020, 188, 105504.	5.2	10
12	Bio-reduction of ferrihydrite-montmorillonite-organic matter complexes: Effect of montmorillonite and fate of organic matter. Geochimica Et Cosmochimica Acta, 2020, 276, 327-344.	3.9	39
13	In Situ Liquid Secondary Ion Mass Spectrometry: A Surprisingly Soft Ionization Process for Investigation of Halide Ion Hydration. Analytical Chemistry, 2019, 91, 7039-7046.	6.5	27
14	Reduction of structural Fe(III) in nontronite by thermophilic microbial consortia enriched from hot springs in Tengchong, Yunnan Province, China. Chemical Geology, 2018, 479, 47-57.	3.3	13
15	Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring. Frontiers in Microbiology, 2017, 8, 1336.	3.5	35
16	Biological reduction of structural Fe(III) in smectites by a marine bacterium at 0.1 and 20 MPa. Chemical Geology, 2016, 438, 1-10.	3.3	19
17	Relative importance of advective flow versus environmental gradient in shaping aquatic ammonium oxidizers near the Three Gorges Dam of the Yangtze River, China. Environmental Microbiology Reports, 2016, 8, 667-674.	2.4	12
18	Actinobacterial Diversity in the Sediments of Five Cold Springs on the Qinghai-Tibet Plateau. Frontiers in Microbiology, 2015, 6, 1345.	3.5	19

LIUQIN HUANG

#	Article	IF	CITATIONS
19	Distribution and Diversity of Aerobic Carbon Monoxide-Oxidizing Bacteria in Geothermal Springs of China, the Philippines, and the United States. Geomicrobiology Journal, 2015, 32, 903-913.	2.0	19
20	Diversity and Abundance of Ammonia-Oxidizing Archaea and Bacteria in Diverse Chinese Paddy Soils. Geomicrobiology Journal, 2014, 31, 12-22.	2.0	23
21	Latitudinal Distribution of Ammonia-Oxidizing Bacteria and Archaea in the Agricultural Soils of Eastern China. Applied and Environmental Microbiology, 2014, 80, 5593-5602.	3.1	60
22	Greater temporal changes of sediment microbial community than its waterborne counterpart in Tengchong hot springs, Yunnan Province, China. Scientific Reports, 2014, 4, 7479.	3.3	41
23	Abundance and Diversity of Ammonia-Oxidizing Bacteria and Archaea in Cold Springs on the Qinghai-Tibet Plateau. Geomicrobiology Journal, 2013, 30, 530-539.	2.0	10
24	Cultivation and characterization of thermophilic <i>Nitrospira</i> species from geothermal springs in the US Great Basin, China, and Armenia. FEMS Microbiology Ecology, 2013, 85, 283-292.	2.7	64
25	A Comprehensive Census of Microbial Diversity in Hot Springs of Tengchong, Yunnan Province China Using 16S rRNA Gene Pyrosequencing. PLoS ONE, 2013, 8, e53350.	2.5	216
26	Control of Temperature on Microbial Community Structure in Hot Springs of the Tibetan Plateau. PLoS ONE, 2013, 8, e62901.	2.5	157
27	The Response of Potentially Active Planktonic Actinobacteria to the Construction of Three Gorges Dam of the Yangtze River, China. Geomicrobiology Journal, 2012, 29, 114-123.	2.0	4
28	Microbial reduction of Fe(III) in illite–smectite minerals by methanogen Methanosarcina mazei. Chemical Geology, 2012, 292-293, 35-44.	3.3	101
29	Diversity of microbial plankton across the Three Gorges Dam of the Yangtze River, China. Geoscience Frontiers, 2012, 3, 335-349.	8.4	35
30	Microbial diversity in two cold springs on the Qinghai-Tibetan Plateau. Geoscience Frontiers, 2012, 3, 317-325.	8.4	10