Jeremy T Kerr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4297855/publications.pdf Version: 2024-02-01

IEDEMY T KEDD

#	Article	IF	CITATIONS
1	Climate change aggravates nonâ€target effects of pesticides on dragonflies at macroecological scales. Ecological Applications, 2022, 32, e02494.	1.8	4
2	Floral diversity increases butterfly diversity in a multitrophic metacommunity. Ecology, 2022, 103, e3735.	1.5	4
3	Science integrity and environmental decision-making in Canada: a fragile renaissance. , 2021, , 73-97.		1
4	Climate Change and Local Host Availability Drive the Northern Range Boundary in the Rapid Expansion of a Specialist Insect Herbivore, Papilio cresphontes. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	9
5	Multiple measures of biodiversity change make for the strongest analyses with historical data – Reply to. Biological Conservation, 2021, 260, 109217.	1.9	1
6	Bridging the divide between ecological forecasts and environmental decision making. Ecosphere, 2021, 12, .	1.0	14
7	On "success―in applied environmental research — What is it, how can it be achieved, and how does one know when it has been achieved?. Environmental Reviews, 2020, 28, 357-372.	2.1	36
8	Climate change contributes to widespread declines among bumble bees across continents. Science, 2020, 367, 685-688.	6.0	381
9	Racing against change: understanding dispersal and persistence to improve species' conservation prospects. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202061.	1.2	19
10	Researcher engagement in policy deemed societally beneficial yet unrewarded. Frontiers in Ecology and the Environment, 2019, 17, 375-382.	1.9	17
11	Minimising Risks of Global Change by Enhancing Resilience of Pollinators in Agricultural Systems. , 2019, , 105-111.		6
12	Colour lightness of butterfly assemblages across North America and Europe. Scientific Reports, 2019, 9, 1760.	1.6	32
13	The origins and maintenance of global species endemism. Global Ecology and Biogeography, 2019, 28, 170-183.	2.7	20
14	Using insect natural history collections to study global change impacts: challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20170405.	1.8	52
15	Canadian butterfly climate debt is significant and correlated with range size. Ecography, 2018, 41, 2005-2015.	2.1	23
16	Cropland patchiness strongest agricultural predictor of bird diversity for multiple guilds in landscapes of Ontario, Canada. Regional Environmental Change, 2018, 18, 2105-2115.	1.4	9
17	High-Resolution Ecological Niche Modeling of <i>Ixodes scapularis</i> Ticks Based on Passive Surveillance Data at the Northern Frontier of Lyme Disease Emergence in North America. Vector-Borne and Zoonotic Diseases, 2018, 18, 235-242.	0.6	49
18	Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward. Remote Sensing in Ecology and Conservation, 2018, 4, 71-93.	2.2	176

#	Article	IF	CITATIONS
19	Nets versus spraying: A spatial modelling approach reveals indoor residual spraying targets Anopheles mosquito habitats better than mosquito nets in Tanzania. PLoS ONE, 2018, 13, e0205270.	1.1	3
20	Climate change-driven range losses among bumblebee species are poised to accelerate. Scientific Reports, 2018, 8, 14464.	1.6	61
21	Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research. Global Change Biology, 2018, 24, 5281-5291.	4.2	64
22	Over the top: do thermal barriers along elevation gradients limit biotic similarity?. Ecography, 2017, 40, 478-486.	2.1	20
23	Taxonomic bias and international biodiversity conservation research. Facets, 2017, 1, 105-113.	1.1	147
24	Assessing the shelf life of costâ€efficient conservation plans for species at risk across gradients of agricultural land use. Conservation Biology, 2017, 31, 837-847.	2.4	8
25	High community turnover and dispersal limitation relative to rapid climate change. Global Ecology and Biogeography, 2017, 26, 459-471.	2.7	30
26	Using regional patterns for predicting local temporal change: a test by natural experiment in the Great Lakes bioregion, Ontario, Canada. Diversity and Distributions, 2017, 23, 261-271.	1.9	3
27	A cocktail of poisons. Science, 2017, 356, 1331-1332.	6.0	15
28	Defending the scientific integrity of conservationâ€policy processes. Conservation Biology, 2017, 31, 967-975.	2.4	28
29	eButterfly: Leveraging Massive Online Citizen Science for Butterfly Conservation. Insects, 2017, 8, 53.	1.0	69
30	Dispersal Limitation, Climate Change, and Practical Tools for Butterfly Conservation in Intensively Used Landscapes. Natural Areas Journal, 2016, 36, 440.	0.2	9
31	Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sensing in Ecology and Conservation, 2016, 2, 122-131.	2.2	243
32	Temperatureâ€related geographical shifts among passerines: contrasting processes along poleward and equatorward range margins. Ecology and Evolution, 2015, 5, 5162-5176.	0.8	26
33	Where have all the mosquito nets gone? Spatial modelling reveals mosquito net distributions across Tanzania do not target optimal Anopheles mosquito habitats. Malaria Journal, 2015, 14, 322.	0.8	14
34	Facilitating climateâ€changeâ€induced range shifts across continental landâ€use barriers. Conservation Biology, 2015, 29, 1586-1595.	2.4	64
35	Climate change impacts on bumblebees converge across continents. Science, 2015, 349, 177-180.	6.0	572
36	Looking Forward by Looking Back: Using Historical Calibration to Improve Forecasts of Human Disease Vector Distributions. Vector-Borne and Zoonotic Diseases. 2015. 15. 173-183.	0.6	7

#	Article	IF	CITATIONS
37	Relocation risky for bumblebee colonies—Response. Science, 2015, 350, 287-287.	6.0	4
38	A conceptual framework for the emerging discipline of conservation physiology. , 2014, 2, cou033-cou033.		32
39	Predicting the sensitivity of butterfly phenology to temperature over the past century. Global Change Biology, 2014, 20, 504-514.	4.2	56
40	Does climate limit species richness by limiting individual species' ranges?. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132695.	1.2	43
41	Predicting the impacts of global change on species, communities and ecosystems: it takes time. Global Ecology and Biogeography, 2013, 22, 261-263.	2.7	28
42	Response to Stevens and Jenkins' pesticide impacts on bumblebees: a missing piece. Conservation Letters, 2013, 6, 215-216.	2.8	1
43	Mechanistic models for the spatial spread of species under climate change. Ecological Applications, 2013, 23, 815-828.	1.8	80
44	Land Development in and around Protected Areas at the Wilderness Frontier. Conservation Biology, 2013, 27, 166-176.	2.4	45
45	Do pathogen spillover, pesticide use, or habitat loss explain recent North American bumblebee declines?. Conservation Letters, 2012, 5, 232-239.	2.8	71
46	Systemic range shift lags among a pollinator species assemblage following rapid climate change ¹ This article is part of a Special Issue entitled "Pollination biology research in Canada: Perspectives on a mutualism at different scales―. Botany, 2012, 90, 587-597.	0.5	25
47	Ecosystem services of pollinator diversity: a review of the relationship with pollen limitation of plant reproduction < sup > 1 < /sup > This article is part of a Special Issue entitled $\hat{a} \in $ Pollination biology research in Scalada: Properties on a mutualism at different scales for Canada: 2012 1.535783 eview	0.5	16
48	is part of the virtual symposium "Flagship Species – Flagship Problems―that deals with ecology, biodiversity and management issues, and climate impacts on species at risk and of Canadian importance, including the polar bear (<i>Ursus maritimus</i>), Atlantic cod (<i>Gadus morhua</i>), Piping Plover (<i>Charadrius melodus</i>), and caribou (<i>Rangifer tarandus</i>). Canadian Journal of Zoology,	0.4	34
49	2011, 89, 435-451. Quantifying the importance of regional and local filters for community trait structure in tropical and temperate zones. Ecology, 2011, 92, 903-914.	1.5	52
50	How, and how much, natural cover loss increases species richness. Global Ecology and Biogeography, 2011, 20, 857-867.	2.7	44
51	In search of general models in evolutionary time and space. Journal of Biogeography, 2011, 38, 2041-2042.	1.4	2
52	A mobility index for Canadian butterfly species based on naturalists' knowledge. Biodiversity and Conservation, 2011, 20, 2273-2295.	1.2	44
53	Integrating Theory and Predictive Modeling for Conservation Research. , 2011, , 9-28.		6
54	Population consequences of mutational events: effects of antibiotic resistance on the r/K trade-off. Evolutionary Ecology, 2010, 24, 227-236.	0.5	25

#	Article	IF	CITATIONS
55	High Resolution Niche Models of Malaria Vectors in Northern Tanzania: A New Capacity to Predict Malaria Risk?. PLoS ONE, 2010, 5, e9396.	1.1	63
56	Just passing through: Global change and the conservation of biodiversity in protected areas. Biological Conservation, 2010, 143, 1094-1101.	1.9	52
57	Spatial speciesâ€richness gradients across scales: a metaâ€analysis. Journal of Biogeography, 2009, 36, 132-147.	1.4	573
58	Coefficient shifts in geographical ecology: an empirical evaluation of spatial and nonâ€spatial regression. Ecography, 2009, 32, 193-204.	2.1	231
59	Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography, 2009, 32, 22-33.	2.1	150
60	Predicting future shifts in species diversity. Ecography, 2009, 32, 3-4.	2.1	15
61	Evolutionary constraints on regional faunas: whom, but not how many. Ecology Letters, 2009, 12, 57-65.	3.0	76
62	Reconciling topographic and climatic effects on widespread and rangeâ€restricted species richness. Global Ecology and Biogeography, 2009, 18, 735-744.	2.7	23
63	Biodiversity and climate change use scenarios framework for the GEOSS interoperability pilot process. Ecological Informatics, 2009, 4, 23-33.	2.3	25
64	Historically calibrated predictions of butterfly species' range shift using global change as a pseudoâ€experiment. Ecology, 2009, 90, 2213-2222.	1.5	107
65	TESTS OF THE MID-DOMAIN HYPOTHESIS: A REVIEW OF THE EVIDENCE. Ecological Monographs, 2008, 78, 3-18.	2.4	77
66	Using species distribution models to effectively conserve biodiversity into the future. Biodiversity, 2008, 9, 39-46.	0.5	5
67	The Macroecological Contribution to Global Change Solutions. Science, 2007, 316, 1581-1584.	6.0	192
68	METABOLIC THEORY AND DIVERSITY GRADIENTS: WHERE DO WE GO FROM HERE?. Ecology, 2007, 88, 1898-1902.	1.5	47
69	A GLOBAL EVALUATION OF METABOLIC THEORY AS AN EXPLANATION FOR TERRESTRIAL SPECIES RICHNESS GRADIENTS. Ecology, 2007, 88, 1877-1888.	1.5	139
70	Testing, as opposed to supporting, the Mid-domain Hypothesis: a response to. Ecology Letters, 2007, 10, E9-E10.	3.0	6
71	A test of Metabolic Theory as the mechanism underlying broad-scale species-richness gradients. Global Ecology and Biogeography, 2007, 16, 170-178.	2.7	68
72	Human impacts on environment–diversity relationships: evidence for biotic homogenization from butterfly species richness patterns. Global Ecology and Biogeography, 2007, 16, 290-299.	2.7	60

#	Article	IF	CITATIONS
73	Climate change and conservation biology. , 2007, , .		1
74	Contrasting spatial and temporal global change impacts on butterfly species richness during the 20th century. Ecography, 2006, 29, 908-918.	2.1	50
75	The missing Madagascan mid-domain effect. Ecology Letters, 2006, 9, 149-159.	3.0	36
76	Protected Areas and Prospects for Endangered Species Conservation in Canada. Conservation Biology, 2006, 20, 48-55.	2.4	67
77	Land Use Mapping. , 2005, , 441-449.		3
78	Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 2004, 7, 1121-1134.	3.0	1,011
79	Habitat loss and the limits to endangered species recovery. Ecology Letters, 2004, 7, 1163-1169.	3.0	146
80	PATTERNS AND CAUSES OF SPECIES ENDANGERMENT IN CANADA. , 2004, 14, 743-753.		95
81	Factors affecting the use of open source software in tertiary education institutions. First Monday, 2004, 9, .	0.6	8
82	Land use and cover with intensity of agriculture for Canada from satellite and census data. Global Ecology and Biogeography, 2003, 12, 161-172.	2.7	53
83	From space to species: ecological applications for remote sensing. Trends in Ecology and Evolution, 2003, 18, 299-305.	4.2	1,063
84	ENERGY, WATER, AND BROAD-SCALE GEOGRAPHIC PATTERNS OF SPECIES RICHNESS. Ecology, 2003, 84, 3105-3117.	1.5	1,868
85	Endemism, diversity, and the threat of tropical moist forest extinctions. Biodiversity and Conservation, 2002, 11, 695-704.	1.2	20
86	Global biodiversity patterns: from description to understanding. Trends in Ecology and Evolution, 2001, 16, 424-425.	4.2	23
87	Remotely sensed habitat diversity predicts butterfly species richness and community similarity in Canada. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11365-11370.	3.3	215
88	Butterfly Species Richness Patterns in Canada: Energy, Heterogeneity, and the Potential Consequences of Climate Change. Ecology and Society, 2001, 5, .	0.9	62
89	Indicator Taxa, Rapid Biodiversity Assessment, and Nestedness in an Endangered Ecosystem. Conservation Biology, 2000, 14, 1726-1734.	2.4	141
90	Indicator Taxa, Rapid Biodiversity Assessment, and Nestedness in an Endangered Ecosystem. Conservation Biology, 2000, 14, 1726-1734.	2.4	113

#	Article	IF	CITATIONS
91	Weak links: †Rapoport's rule' and largeâ€scale species richness patterns. Global Ecology and Biogeography, 1999, 8, 47-54.	2.7	45
92	Title is missing!. , 1999, 8, 617-628.		38
93	The relative importance of evolutionary and environmental controls on broad-scale patterns of species richness in North America. Ecoscience, 1999, 6, 329-337.	0.6	72
94	Some general propositions about the study of spatial patterns of species richness. Ecoscience, 1999, 6, 392-399.	0.6	70
95	The Impact of Climate Change on Mammal Diversity in Canada. , 1998, 49, 263-270.		42
96	Lepidopteran richness patterns in North America. Ecoscience, 1998, 5, 448-453.	0.6	62
97	Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature, 1997, 385, 252-254.	13.7	514
98	Species Richness, Endemism, and the Choice of Areas for Conservation. Riqueza de Especies, Endemismo y Seleccion de Areas para Conservacion. Conservation Biology, 1997, 11, 1094-1100.	2.4	260
99	Effects of Human Activity on Global Extinction Risk. Conservation Biology, 1995, 9, 1528-1538.	2.4	157
100	Twenty actions for a "good Anthropoceneâ€â€"perspectives from early-career conservation professionals. Environmental Reviews, 0, , 1-10.	2.1	9