Lee-Wei Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4297328/publications.pdf Version: 2024-02-01

LEE-WELYANC

#	Article	IF	CITATIONS
1	Global Dynamics of Proteins: Bridging Between Structure and Function. Annual Review of Biophysics, 2010, 39, 23-42.	10.0	536
2	Coupling between Catalytic Site and Collective Dynamics: A Requirement for Mechanochemical Activity of Enzymes. Structure, 2005, 13, 893-904.	3.3	257
3	Elastic network models for understanding biomolecular machinery: from enzymes to supramolecular assemblies. Physical Biology, 2005, 2, S173-S180.	1.8	159
4	o GNM: online computation of structural dynamics using the Gaussian Network Model. Nucleic Acids Research, 2006, 34, W24-W31.	14.5	140
5	DynOmics: dynamics of structural proteome and beyond. Nucleic Acids Research, 2017, 45, W374-W380.	14.5	135
6	Insights into Equilibrium Dynamics of Proteins from Comparison of NMR and X-Ray Data with Computational Predictions. Structure, 2007, 15, 741-749.	3.3	124
7	Principal component analysis of native ensembles of biomolecular structures (PCA_NEST): insights into functional dynamics. Bioinformatics, 2009, 25, 606-614.	4.1	120
8	iGNM: a database of protein functional motions based on Gaussian Network Model. Bioinformatics, 2005, 21, 2978-2987.	4.1	115
9	Drug Repurposing Screening Identifies Tioconazole as an ATG4 Inhibitor that Suppresses Autophagy and Sensitizes Cancer Cells to Chemotherapy. Theranostics, 2018, 8, 830-845.	10.0	106
10	Anisotropic fluctuations of amino acids in protein structures: insights from X-ray crystallography and elastic network models. Bioinformatics, 2007, 23, i175-i184.	4.1	73
11	<i>i</i> GNM 2.0: the Gaussian network model database for biomolecular structural dynamics. Nucleic Acids Research, 2016, 44, D415-D422.	14.5	71
12	Blocking the interaction between S100A9 and RAGE V domain using CHAPS molecule: A novel route to drug development against cell proliferation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1558-1569.	2.3	51
13	Coarse-Grained Models Reveal Functional Dynamics - I. Elastic Network Models – Theories, Comparisons and Perspectives. Bioinformatics and Biology Insights, 2008, 2, BBI.S460.	2.0	47
14	Ligand-Induced Protein Responses and Mechanical Signal Propagation Described by Linear Response Theories. Biophysical Journal, 2014, 107, 1415-1425.	0.5	23
15	Molecular Binding Sites Are Located Near the Interface of Intrinsic Dynamics Domains (IDDs). Journal of Chemical Information and Modeling, 2014, 54, 2275-2285.	5.4	23
16	Structural insights into the interaction of human S100B and basic fibroblast growth factor (FGF2): Effects on FGFR1 receptor signaling. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 2606-2619.	2.3	21
17	ZHX2 promotes HIF1α oncogenic signaling in triple-negative breast cancer. ELife, 2021, 10, .	6.0	21
18	S100B as an antagonist to block the interaction between S100A1 and the RAGE V domain. PLoS ONE, 2018, 13, e0190545.	2.5	16

LEE-WEI YANG

#	Article	IF	CITATIONS
19	Models with Energy Penalty on Interresidue Rotation Address Insufficiencies of Conventional Elastic Network Models. Biophysical Journal, 2011, 100, 1784-1793.	0.5	14
20	Helical structure motifs made searchable for functional peptide design. Nature Communications, 2022, 13, 102.	12.8	10
21	Protein Dynamics and Contact Topology Reveal Protein–DNA Binding Orientation. Journal of Chemical Theory and Computation, 2016, 12, 5269-5277.	5.3	9
22	Resolution-exchanged structural modeling and simulations jointly unravel that subunit rolling underlies the mechanism of programmed ribosomal frameshifting. Bioinformatics, 2019, 35, 945-952.	4.1	9
23	Structure and function of chicken interleukin-1 beta mutants: uncoupling of receptor binding and in vivo biological activity. Scientific Reports, 2016, 6, 27729.	3.3	7
24	The N-terminal substrate-recognition domain of a LonC protease exhibits structural and functional similarity to cytosolic chaperones. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1789-1797.	2.5	6
25	Functional Importance of Mobile Ribosomal Proteins. BioMed Research International, 2015, 2015, 1-11.	1.9	5
26	Structural Insights into Substrate Recognition by Clostridium difficile Sortase. Frontiers in Cellular and Infection Microbiology, 2016, 6, 160.	3.9	4
27	An Efficient Timer and Sizer of Biomacromolecular Motions. Structure, 2020, 28, 259-269.e8.	3.3	4
28	Molecular dynamics simulations and linear response theories jointly describe biphasic responses of myoglobin relaxation and reveal evolutionarily conserved frequent communicators. Biophysics and Physicobiology, 2019, 16, 473-484.	1.0	3
29	An Effective and Safe Enkephalin Analog for Antinociception. Pharmaceutics, 2021, 13, 927.	4.5	3
30	DR-SIP: protocols for higher order structure modeling with distance restraints- and cyclic symmetry-imposed packing. Bioinformatics, 2020, 36, 449-461.	4.1	1