Agnes Nadjar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4296370/publications.pdf

Version: 2024-02-01

		159585	155660
58	3,252	30	55
papers	citations	h-index	g-index
63	63	62	1260
03	03	63	4368
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharmacological Reviews, 2018, 70, 12-38.	16.0	285
2	Short-Term Long Chain Omega3 Diet Protects from Neuroinflammatory Processes and Memory Impairment in Aged Mice. PLoS ONE, 2012, 7, e36861.	2.5	168
3	Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling. PLoS Biology, 2016, 14, e1002466.	5. 6	140
4	Inhibiting Microglia Expansion Prevents Diet-Induced Hypothalamic and Peripheral Inflammation. Diabetes, 2017, 66, 908-919.	0.6	127
5	Microglia in neuronal plasticity: Influence of stress. Neuropharmacology, 2015, 96, 19-28.	4.1	122
6	Nutritional n-3 PUFAs deficiency during perinatal periods alters brain innate immune system and neuronal plasticity-associated genes. Brain, Behavior, and Immunity, 2014, 41, 22-31.	4.1	119
7	Inactivation of the Cerebral NFκB Pathway Inhibits Interleukin-1β-Induced Sickness Behavior and c-Fos Expression in Various Brain Nuclei. Neuropsychopharmacology, 2005, 30, 1492-1499.	5.4	118
8	Resolvin D1 and E1 promote resolution of inflammation in microglial cells in vitro. Brain, Behavior, and Immunity, 2016, 55, 249-259.	4.1	117
9	RGS9–2 Negatively Modulates l-3,4-Dihydroxyphenylalanine-Induced Dyskinesia in Experimental Parkinson's Disease. Journal of Neuroscience, 2007, 27, 14338-14348.	3.6	116
10	Priming for I-dopa-induced dyskinesia in Parkinson's disease: A feature inherent to the treatment or the disease?. Progress in Neurobiology, 2009, 87, 1-9.	5.7	116
11	Shaping of Motor Responses by Incentive Values through the Basal Ganglia. Journal of Neuroscience, 2007, 27, 1176-1183.	3.6	106
12	n-3 LCPUFA improves cognition: The young, the old and the sick. Prostaglandins Leukotrienes and Essential Fatty Acids, 2014, 91, 1-20.	2.2	97
13	Neuroinflammation in Autism: Plausible Role of Maternal Inflammation, Dietary Omega 3, and Microbiota. Neural Plasticity, 2016, 2016, 1-15.	2.2	88
14	Essential omega-3 fatty acids tune microglial phagocytosis of synaptic elements in the mouse developing brain. Nature Communications, 2020, 11, 6133.	12.8	88
15	The 3-Hydroxy-3-Methylglutaryl-CoA Reductase Inhibitor Lovastatin Reduces Severity of I-DOPA-Induced Abnormal Involuntary Movements in Experimental Parkinson's Disease. Journal of Neuroscience, 2008, 28, 4311-4316.	3.6	83
16	Dietary n-3 PUFAs Deficiency Increases Vulnerability to Inflammation-Induced Spatial Memory Impairment. Neuropsychopharmacology, 2015, 40, 2774-2787.	5 . 4	79
17	Nuclear factor κB nuclear translocation as a crucial marker of brain response to interleukin-1. A study in rat and interleukin-1 type I deficient mouse. Journal of Neurochemistry, 2004, 87, 1024-1036.	3.9	76
18	Phenotype of Striatofugal Medium Spiny Neurons in Parkinsonian and Dyskinetic Nonhuman Primates: A Call for a Reappraisal of the Functional Organization of the Basal Ganglia. Journal of Neuroscience, 2006, 26, 8653-8661.	3.6	76

#	Article	IF	CITATIONS
19	Transgenic Increase in n-3/n-6 Fatty Acid Ratio Protects Against Cognitive Deficits Induced by an Immune Challenge through Decrease of Neuroinflammation. Neuropsychopharmacology, 2015, 40, 525-536.	5.4	74
20	NFκB Activates <i>in vivo</i> the Synthesis of Inducible Cox-2 in the Brain. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 1047-1059.	4.3	73
21	Modulation of brain PUFA content in different experimental models of mice. Prostaglandins Leukotrienes and Essential Fatty Acids, 2016, 114, 1-10.	2.2	67
22	Dietary omega-3 deficiency exacerbates inflammation and reveals spatial memory deficits in mice exposed to lipopolysaccharide during gestation. Brain, Behavior, and Immunity, 2018, 73, 427-440.	4.1	63
23	Early morphofunctional plasticity of microglia in response to acute lipopolysaccharide. Brain, Behavior, and Immunity, 2013, 34, 151-158.	4.1	59
24	Astrocyteâ€derived adenosine modulates increased sleep pressure during inflammatory response. Glia, 2013, 61, 724-731.	4.9	57
25	Interleukin-6 activates arginine vasopressin neurons in the supraoptic nucleus during immune challenge in rats. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E1289-E1299.	3.5	50
26	Dietary n-3 long chain PUFA supplementation promotes a pro-resolving oxylipin profile in the brain. Brain, Behavior, and Immunity, 2019, 76, 17-27.	4.1	50
27	Brain eicosapentaenoic acid metabolism as a lead for novel therapeutics in major depression. Brain, Behavior, and Immunity, 2020, 85, 21-28.	4.1	45
28	Microglia modulate hippocampal synaptic transmission and sleep duration along the light/dark cycle. Glia, 2022, 70, 89-105.	4.9	43
29	Roles of Microglial Phagocytosis and Inflammatory Mediators in the Pathophysiology of Sleep Disorders. Frontiers in Cellular Neuroscience, 2017, 11, 250.	3.7	40
30	IGF-1 signaling reduces neuro-inflammatory response and sensitivity of neurons to MPTP. Neurobiology of Aging, 2009, 30, 2021-2030.	3.1	36
31	Maternal n-3 polyunsaturated fatty acid dietary supply modulates microglia lipid content in the offspring. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 133, 1-7.	2.2	36
32	Role of metabolic programming in the modulation of microglia phagocytosis by lipids. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 135, 63-73.	2.2	34
33	Evolution of the dynamic properties of the cortex–basal ganglia network after dopaminergic depletion in rats. Neurobiology of Disease, 2012, 46, 402-413.	4.4	33
34	Role of Glia in the Regulation of Sleep in Health and Disease. , 2020, 10, 687-712.		30
35	Signaling pathways of interleukin-1 actions in the brain: Anatomical distribution of phospho-ERK1/2 in the brain of rat treated systemically with interleukin- $1\hat{l}^2$. Neuroscience, 2005, 134, 921-932.	2.3	27
36	Microglial Activation Enhances Associative Taste Memory through Purinergic Modulation of Glutamatergic Neurotransmission. Journal of Neuroscience, 2015, 35, 3022-3033.	3.6	27

#	Article	IF	CITATIONS
37	Bioactive lipids as new class of microglial modulators: When nutrition meets neuroimunology. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 79, 19-26.	4.8	27
38	Mechanisms Involved in Dual Vasopressin/Apelin Neuron Dysfunction during Aging. PLoS ONE, 2014, 9, e87421.	2.5	23
39	Direct and indirect effects of lipids on microglia function. Neuroscience Letters, 2019, 708, 134348.	2.1	23
40	Complement C3 mediates early hippocampal neurodegeneration and memory impairment in experimental multiple sclerosis. Neurobiology of Disease, 2021, 160, 105533.	4.4	21
41	Microglial Cannabinoid Type 1 Receptor Regulates Brain Inflammation in a Sex-Specific Manner. Cannabis and Cannabinoid Research, 2021, , .	2.9	18
42	Maternal dietary omega-3 deficiency worsens the deleterious effects of prenatal inflammation on the gut-brain axis in the offspring across lifetime. Neuropsychopharmacology, 2021, 46, 579-602.	5.4	16
43	Enriched dairy fat matrix diet prevents early life lipopolysaccharide-induced spatial memory impairment at adulthood. Prostaglandins Leukotrienes and Essential Fatty Acids, 2016, 113, 9-18.	2.2	14
44	N-3 polyunsaturated fatty acid and neuroinflammation in aging and Alzheimer's disease. Nutrition and Aging (Amsterdam, Netherlands), 2015, 3, 33-47.	0.3	13
45	High frequency stimulation of the entopeduncular nucleus sets the cortico-basal ganglia network to a new functional state in the dystonic hamster. Neurobiology of Disease, 2009, 35, 399-405.	4.4	12
46	Nâ€3 PUFA deficiency disrupts oligodendrocyte maturation and myelin integrity during brain development. Glia, 2022, 70, 50-70.	4.9	12
47	Microglia–Neuron Crosstalk in Obesity: Melodious Interaction or Kiss of Death?. International Journal of Molecular Sciences, 2021, 22, 5243.	4.1	10
48	Dietary N-3 PUFA deficiency affects sleep-wake activity in basal condition and in response to an inflammatory challenge in mice. Brain, Behavior, and Immunity, 2020, 85, 162-169.	4.1	9
49	Brain cyclooxygenase-2 mediates interleukin-1-induced cellular activation in preoptic and arcuate hypothalamus, but not sickness symptoms. Neurobiology of Disease, 2010, 39, 393-401.	4.4	8
50	Subthalamic stimulation increases striatal tyrosine hydroxylase phosphorylation. NeuroReport, 2008, 19, 179-182.	1.2	7
51	N-3 PUFA Deficiency Affects the Ultrastructural Organization and Density of White Matter Microglia in the Developing Brain of Male Mice. Frontiers in Cellular Neuroscience, 2022, 16, 802411.	3.7	7
52	Susceptibility of Female Mice to the Dietary Omega-3/Omega-6 Fatty-Acid Ratio: Effects on Adult Hippocampal Neurogenesis and Glia. International Journal of Molecular Sciences, 2022, 23, 3399.	4.1	5
53	N-3 PUFAs and neuroinflammatory processes in cognitive disorders. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D103.	1.4	3
54	Neuroinflammation and aging: influence of dietary n-3 polyunsaturated fatty acid. Oleagineux Corps Gras Lipides, 2011, 18, 301-306.	0.2	2

#	Article	IF	CITATIONS
55	Role of n-3 PUFAs in inflammation <i>via</i> resolvin biosynthesis. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D104.	1.4	0
56	Antiinflammatory Properties of Dietary n-3 Polyunsaturated Fatty Acids Protect Against Cognitive Decline in Aging and Neurodegenerative Diseases., 2018,, 367-384.		0
57	n-3 Long-Chain PUFA-Containing Phospholipids and Neuroprotection. , 2019, , 249-265.		O
58	N-3 Polyunsaturated Fatty Acid and Neuroinflammation in Aging: Role in Cognition. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , 91-112.	0.6	0