Cosimo Inserra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4295796/publications.pdf

Version: 2024-02-01

129	7,358	52	82
papers	citations	h-index	g-index
135	135	135	4307 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature, 2017, 551, 75-79.	27.8	601
2	SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL. Astrophysical Journal, 2013, 770, 128.	4.5	332
3	PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astronomy and Astrophysics, 2015, 579, A40.	5.1	239
4	Slowly fading super-luminous supernovae that are not pair-instability explosions. Nature, 2013, 502, 346-349.	27.8	226
5	INTERACTING SUPERNOVAE AND SUPERNOVA IMPOSTORS: SN 2009ip, IS THIS THE END?. Astrophysical Journal, 2013, 767, 1.	4.5	207
6	High luminosity, slow ejecta and persistent carbon lines: SN 2009dc challenges thermonuclear explosion scenariosa~ Monthly Notices of the Royal Astronomical Society, 2011, 412, 2735-2762.	4.4	170
7	On the diversity of superluminous supernovae: ejected mass as the dominant factor. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3869-3893.	4.4	154
8	The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole. Nature Astronomy, 2017, 1, .	10.1	154
9	Observation of inverse Compton emission from a long \hat{I}^3 -ray burst. Nature, 2019, 575, 459-463.	27.8	146
10	Superluminous supernovae from PESSTO. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2096-2113.	4.4	135
11	SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA. Astrophysical Journal, 2016, 826, 39.	4.5	133
12	The first month of evolution of the slow-rising Type IIP SN 2013ej in M74. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 438, L101-L105.	3.3	124
13	SN 2009jf: a slow-evolving stripped-envelope core-collapse supernovaã Monthly Notices of the Royal Astronomical Society, 2011, 416, 3138-3159.	4.4	114
14	SNÂ2009ip \tilde{A} la PESSTO: no evidence for core collapse yet \tilde{a} Monthly Notices of the Royal Astronomical Society, 2013, 433, 1312-1337.	4.4	110
15	Rapidly evolving transients in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2018, 481, 894-917.	4.4	109
16	A statistical analysis of circumstellar material in Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2013, 436, 222-240.	4.4	100
17	LSQ14bdq: A TYPE Ic SUPER-LUMINOUS SUPERNOVA WITH A DOUBLE-PEAKED LIGHT CURVE. Astrophysical Journal Letters, 2015, 807, L18.	8.3	98
18	The host galaxy and late-time evolution of the superluminous supernova PTF12dam. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1567-1586.	4.4	94

#	Article	lF	CITATIONS
19	LONG-DURATION SUPERLUMINOUS SUPERNOVAE AT LATE TIMES. Astrophysical Journal, 2017, 835, 13.	4.5	92
20	Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors?. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1559-1578.	4.4	90
21	SUPERLUMINOUS SUPERNOVA SN 2015bn IN THE NEBULAR PHASE: EVIDENCE FOR THE ENGINE-POWERED EXPLOSION OF A STRIPPED MASSIVE STAR. Astrophysical Journal Letters, 2016, 828, L18.	8.3	88
22	The Early Detection and Follow-up of the Highly Obscured Type II Supernova 2016ija/DLT16am ^{â^—} . Astrophysical Journal, 2018, 853, 62.	4.5	87
23	K2 Observations of SN 2018oh Reveal a Two-component Rising Light Curve for a Type la Supernova. Astrophysical Journal Letters, 2019, 870, L1.	8.3	80
24	The Type IIP SN 2007od in UGC 12846: from a bright maximum to dust formation in the nebular phase*. Monthly Notices of the Royal Astronomical Society, 2011, 417, 261-279.	4.4	79
25	Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light. Astrophysical Journal, 2017, 836, 158.	4.5	79
26	DES14X3taz: A TYPE I SUPERLUMINOUS SUPERNOVA SHOWING A LUMINOUS, RAPIDLY COOLING INITIAL PRE-PEAK BUMP. Astrophysical Journal Letters, 2016, 818, L8.	8.3	78
27	SPECTROPOLARIMETRY OF SUPERLUMINOUS SUPERNOVAE: INSIGHT INTO THEIR GEOMETRY. Astrophysical Journal, 2016, 831, 79.	4.5	76
28	Complexity in the light curves and spectra of slow-evolving superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4642-4662.	4.4	74
29	SUPERLUMINOUS SUPERNOVAE AS STANDARDIZABLE CANDLES AND HIGH-REDSHIFT DISTANCE PROBES. Astrophysical Journal, 2014, 796, 87.	4.5	73
30	THE TYPE IIP SUPERNOVA 2012aw IN M95: HYDRODYNAMICAL MODELING OF THE PHOTOSPHERIC PHASE FROM ACCURATE SPECTROPHOTOMETRIC MONITORING. Astrophysical Journal, 2014, 787, 139.	4.5	72
31	Measuring nickel masses in Type la supernovae using cobalt emission in nebular phase spectra. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3816-3842.	4.4	72
32	The supernova CSS121015:004244+132827: a clue for understanding superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 2014, 441, 289-303.	4.4	70
33	Observational constraints on the optical and near-infrared emission from the neutron star–black hole binary merger candidate S190814bv. Astronomy and Astrophysics, 2020, 643, A113.	5.1	70
34	Superluminous supernova progenitors have a half-solar metallicity threshold. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3566-3573.	4.4	69
35	Luminous red novae: Stellar mergers or giant eruptions?. Astronomy and Astrophysics, 2019, 630, A75.	5.1	68
36	The bright Type IIP SN 2009bw, showing signs of interactiona [~] Monthly Notices of the Royal Astronomical Society, 2012, 422, 1122-1139.	4.4	67

#	Article	IF	CITATIONS
37	Superluminous supernovae from the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2215-2241.	4.4	67
38	On the nature of hydrogen-rich superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1046-1072.	4.4	65
39	The superluminous supernova PS1-11ap: bridging the gap between low and high redshift. Monthly Notices of the Royal Astronomical Society, 2014, 437, 656-674.	4.4	64
40	RED AND DEAD: THE PROGENITOR OF SN 2012aw IN M95. Astrophysical Journal Letters, 2012, 759, L13.	8.3	63
41	Moderately luminous Type II supernovae. Astronomy and Astrophysics, 2013, 555, A142.	5.1	61
42	Using late-time optical and near-infrared spectra to constrain Type Ia supernova explosion properties. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3567-3582.	4.4	60
43	Observational properties of extreme supernovae. Nature Astronomy, 2019, 3, 697-705.	10.1	60
44	Photometric and Spectroscopic Properties of Type Ia Supernova 2018oh with Early Excess Emission from the Kepler 2 Observations. Astrophysical Journal, 2019, 870, 12.	4.5	60
45	An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz. Monthly Notices of the Royal Astronomical Society, 2020, 499, 482-504.	4.4	58
46	450 d of Type II SN 2013ej in optical and near-infrared. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2003-2018.	4.4	57
47	PESSTO monitoring of SN 2012hn: further heterogeneity among faint Type I supernovaeâ~ Monthly Notices of the Royal Astronomical Society, 2014, 437, 1519-1533.	4.4	56
48	The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. Astronomy and Astrophysics, 2017, 602, A9.	5.1	56
49	On the progenitor of the Type IIP SN 2013ej in M74. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 439, L56-L60.	3.3	55
50	A comparative study of Type II-P and II-L supernova rise times as exemplified by the case of LSQ13cuw. Astronomy and Astrophysics, 2015, 582, A3.	5.1	55
51	Massive stars exploding in a He-rich circumstellar medium – IV. Transitional Type Ibn supernovae. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1921-1940.	4.4	55
52	The type lax supernova, SN 2015H. Astronomy and Astrophysics, 2016, 589, A89.	5.1	55
53	A population of highly energetic transient events in the centres of active galaxies. Nature Astronomy, 2017, 1, 865-871.	10.1	53
54	SN 2009ib: a Type II-P supernova with an unusually long plateau. Monthly Notices of the Royal Astronomical Society, 2015, 450, 3137-3154.	4.4	52

#	Article	IF	CITATIONS
55	Supersolar Ni/Fe production in the Type IIP SN 2012ec. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2482-2494.	4.4	51
56	The Progenitor and Early Evolution of the Type IIb SN 2016gkg. Astrophysical Journal Letters, 2017, 836, L12.	8.3	49
57	Pan-STARRS and PESSTO search for an optical counterpart to the LIGO gravitational-wave source GW150914. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4094-4116.	4.4	48
58	Hydrogen-rich supernovae beyond the neutrino-driven core-collapse paradigm. Nature Astronomy, 2017, 1, 713-720.	10.1	48
59	SN 2009ip at late times – an interacting transient at +2Âyears. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3887-3906.	4.4	45
60	The Type Ib SN 1999dn: one year of photometric and spectroscopic monitoringâ [~] Monthly Notices of the Royal Astronomical Society, 2011, 411, 2726-2738.	4.4	44
61	Slow-blue nuclear hypervariables in PanSTARRS-1. Monthly Notices of the Royal Astronomical Society, 2016, 463, 296-331.	4.4	44
62	Real-time discovery of AT2020xnd: a fast, luminous ultraviolet transient with minimal radioactive ejecta. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5138-5147.	4.4	44
63	SN 2012ec: mass of the progenitor from PESSTO follow-up of the photospheric phase. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2312-2331.	4.4	42
64	Supernova 2012ec: identification of the progenitor and early monitoring with PESSTO. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 431, L102-L106.	3.3	39
65	On Type IIn/Ia-CSM supernovae as exemplified by SN 2012ca. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2721-2740.	4.4	38
66	A SEARCH FOR AN OPTICAL COUNTERPART TO THE GRAVITATIONAL-WAVE EVENT GW151226. Astrophysical Journal Letters, 2016, 827, L40.	8.3	38
67	Observations of the GRB Afterglow ATLAS17aeu and Its Possible Association with GW 170104. Astrophysical Journal, 2017, 850, 149.	4.5	38
68	A nearby super-luminous supernova with a long pre-maximum & "plateau―and strong C†II features. Astronomy and Astrophysics, 2018, 620, A67.	5.1	36
69	Evidence for a Chandrasekhar-mass explosion in the Ca-strong 1991bg-like type Ia supernova 2016hnk. Astronomy and Astrophysics, 2019, 630, A76.	5.1	35
70	The tidal disruption event AT 2018hyz – I. Double-peaked emission lines and a flat Balmer decrement. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4119-4133.	4.4	35
71	Massive stars exploding in a He-rich circumstellar medium $\hat{a} \in V$. Observations of the slow-evolving SN lbn OGLE-2012-SN-006. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1941-1953.	4.4	33
72	Early observations of the nearby Type la supernova SNÂ2015F. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4476-4494.	4.4	33

#	Article	IF	CITATIONS
73	Spatially Resolved MaNGA Observations of the Host Galaxy of Superluminous Supernova 2017egm. Astrophysical Journal Letters, 2017, 849, L4.	8.3	33
74	SNÂ2017ens: The Metamorphosis of a Luminous Broadlined Type Ic Supernova into an SNÂIIn. Astrophysical Journal Letters, 2018, 867, L31.	8.3	33
75	A Statistical Approach to Identify Superluminous Supernovae and Probe Their Diversity. Astrophysical Journal, 2018, 854, 175.	4.5	30
76	Supernova host galaxies in the dark energy survey: I. Deep coadds, photometry, and stellar masses. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4040-4060.	4.4	30
77	Accretion disc cooling and narrow absorption lines in the tidal disruption event AT 2019dsg. Monthly Notices of the Royal Astronomical Society, 2021, 504, 792-815.	4.4	30
78	Massive stars exploding in a He-rich circumstellar medium – VI. Observations of two distant Type Ibn supernova candidates discovered by La Silla-QUEST. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1954-1966.	4.4	29
79	SN 2017dio: A Type-lc Supernova Exploding in a Hydrogen-rich Circumstellar Medium ^{â^—} . Astrophysical Journal Letters, 2018, 854, L14.	8.3	28
80	SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf. Astrophysical Journal Letters, 2019, 885, L23.	8.3	28
81	Type II supernovae in low-luminosity host galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3232-3253.	4.4	26
82	The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor. Nature Astronomy, 2018, 2, 574-579.	10.1	26
83	The evolution of luminous red nova AT 2017jfs in NGC 4470. Astronomy and Astrophysics, 2019, 625, L8.	5.1	26
84	OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION. Astrophysical Journal Letters, 2015, 799, L2.	8.3	25
85	SNe 2013K and 2013am: observed and physical properties of two slow, normal Type IIP events. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1937-1959.	4.4	25
86	Early ultraviolet emission in the Type Ia supernova LSQ12gdj: No evidence for ongoing shock interaction. Monthly Notices of the Royal Astronomical Society, 2014, 445, 30-48.	4.4	23
87	SN2012ca: a stripped envelope core-collapse SN interacting with dense circumstellar medium. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 437, L51-L55.	3.3	23
88	Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at Redshift Two. Astrophysical Journal, 2018, 854, 37.	4.5	23
89	Signatures of circumstellar interaction in the Type IIL supernova ASASSN-15oz. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5120-5141.	4.4	23
90	OGLE-2014-SN-131: A long-rising Type Ibn supernova from a massive progenitor. Astronomy and Astrophysics, 2017, 602, A93.	5.1	22

#	Article	IF	CITATIONS
91	<i>Euclid:</i> Superluminous supernovae in the Deep Survey. Astronomy and Astrophysics, 2018, 609, A83.	5.1	22
92	Discovery and follow-up of the unusual nuclear transient OGLE17aaj. Astronomy and Astrophysics, 2019, 622, L2.	5.1	22
93	A detailed spectroscopic study of tidal disruption events. Astronomy and Astrophysics, 2022, 659, A34.	5.1	21
94	Supernova 2013fc in a circumnuclear ring of a luminous infrared galaxy: the big brother of SN 1998S. Monthly Notices of the Royal Astronomical Society, 2016, 456, 323-346.	4.4	18
95	The first Hubble diagram and cosmological constraints using superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2535-2549.	4.4	18
96	LSQ13fn: A type II-Plateau supernova with a possibly low metallicity progenitor that breaks the standardised candle relation. Astronomy and Astrophysics, 2016, 588, A1.	5.1	17
97	SN 2018gjx reveals that some SNe Ibn are SNe IIb exploding in dense circumstellar material. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1450-1467.	4.4	16
98	SNÂ2017gci: a nearby Type I Superluminous Supernova with a bumpy tail. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2120-2139.	4.4	16
99	Intermediate-luminosity red transients: Spectrophotometric properties and connection to electron-capture supernova explosions. Astronomy and Astrophysics, 2021, 654, A157.	5.1	16
100	Testing the magnetar scenario for superluminous supernovae with circular polarimetry. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4984-4990.	4.4	15
101	The rise and fall of an extraordinary Ca-rich transient. Astronomy and Astrophysics, 2020, 635, A186.	5.1	15
102	GRB 171010A/SN 2017htp: a GRB-SN at zÂ=Â0.33. Monthly Notices of the Royal Astronomical Society, 2490, 5366-5374.	2019, 4.4	14
103	SN 2019muj – a well-observed Type lax supernova that bridges the luminosity gap of the class. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1078-1099.	4.4	14
104	Late-phase Spectropolarimetric Observations of Superluminous Supernova SN 2017egm to Probe the Geometry of the Inner Ejecta. Astrophysical Journal, 2020, 894, 154.	4.5	14
105	The double-peaked Type Ic supernova 2019cad: another SNÂ2005bf-like object. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4907-4922.	4.4	13
106	A luminous stellar outburst during a long-lasting eruptive phase first, and then SN IIn 2018cnf. Astronomy and Astrophysics, 2019, 628, A93.	5.1	13
107	PS15cey and PS17cke: prospective candidates from the Pan-STARRS Search for kilonovae. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4213-4228.	4.4	13
108	Quantitative photospheric spectral analysis of the Type IIP supernova 2007od. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1178-1185.	4.4	12

#	Article	IF	Citations
109	SN 2011A: A LOW-LUMINOSITY INTERACTING TRANSIENT WITH A DOUBLE PLATEAU AND STRONG SODIUM ABSORPTION. Astrophysical Journal, 2015, 807, 63.	4.5	12
110	Studying Type II supernovae as cosmological standard candles using the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4860-4892.	4.4	12
111	LSQ13ddu: a rapidly evolving stripped-envelope supernova with early circumstellar interaction signatures. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2208-2228.	4.4	12
112	The Carnegie Supernova Project II. Astronomy and Astrophysics, 2020, 639, A104.	5.1	12
113	LSQ14efd: observations of the cooling of a shock break-out event in a type Ic Supernova. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2463-2480.	4.4	10
114	The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio. Monthly Notices of the Royal Astronomical Society, 2020, 497, 361-377.	4.4	10
115	Less Than 1% of Core-collapse Supernovae in the Local Universe Occur in Elliptical Galaxies. Astrophysical Journal, 2022, 927, 10.	4.5	10
116	Progenitor, environment, and modelling of the interacting transient ATÂ2016jbu (Gaia16cfr). Monthly Notices of the Royal Astronomical Society, 2022, 513, 5666-5685.	4.4	10
117	Photometric and spectroscopic evolution of the interacting transient ATÂ2016jbu(Gaia16cfr). Monthly Notices of the Royal Astronomical Society, 2022, 513, 5642-5665.	4.4	10
118	SN 2016gsd: an unusually luminous and linear Type II supernova with high velocities. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1761-1781.	4.4	9
119	DES16C3cje: A low-luminosity, long-lived supernova. Monthly Notices of the Royal Astronomical Society, 2020, 496, 95-110.	4.4	8
120	SNÂ2017ivv: two years of evolution of a transitional Type II supernova. Monthly Notices of the Royal Astronomical Society, 2020, 499, 974-992.	4.4	7
121	Transitional events in the spectrophotometric regime between stripped envelope and superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4342-4358.	4.4	6
122	The mystery of photometric twins DES17X1boj and DES16E2bjy. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5576-5589.	4.4	5
123	Optical photometry and spectroscopy of the low-luminosity, broad-lined Ic supernova iPTF15dld. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1848-1856.	4.4	4
124	Type la supernovae with and without blueshifted narrow Naâ∈‰iÂD lines â∈" how different is their structure?. Monthly Notices of the Royal Astronomical Society, 2017, 471, 491-506.	4.4	4
125	Core-collapse supernova subtypes in luminous infrared galaxies. Astronomy and Astrophysics, 2021, 649, A134.	5.1	4
126	SN 2020cpg: an energetic link between Type IIb and Ib supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1832-1849.	4.4	3

COSIMO INSERRA

#	Article	IF	CITATIONS
127	SNÂ2019hcc: a Type II supernova displaying early O ii lines. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4819-4840.	4.4	3
128	SN 2020acat: an energetic fast rising Type IIb supernova. Monthly Notices of the Royal Astronomical Society, 2022, 513, 5540-5558.	4.4	3
129	Withdrawn as Duplicate: Testing the magnetar scenario for superluminous supernovae with circular polarimetry. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 486, L9-L9.	3.3	O