
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4295230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Information Transmission Model-Based Multiobjective Image Inversion Restoration Method for Space Diffractive Membrane Imaging Systems. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	6.3	7
2	Regulation of Hepatitis B Virus Virion Release and Envelopment Timing by Nucleocapsid and Envelope Interactions. Journal of Virology, 2022, 96, JVI0130521.	3.4	9
3	Region-Specific Hepatitis B Virus Genome Exposure from Nucleocapsid Modulated by Capsid Linker Sequence and Inhibitor: Implications for Uncoating. Journal of Virology, 2022, 96, e0039922.	3.4	4
4	Influence of Space Variability on Remote Sensing Image Restoration Performances. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	6
5	Host cell-dependent late entry step as determinant of hepatitis B virus infection. PLoS Pathogens, 2022, 18, e1010633.	4.7	8
6	Characterization of Hepatitis B Precore/Core-Related Antigens. Journal of Virology, 2021, 95, .	3.4	37
7	Multiple roles of PP2A binding motif in hepatitis B virus core linker and PP2A in regulating core phosphorylation state and viral replication. PLoS Pathogens, 2021, 17, e1009230.	4.7	27
8	Regulation of Hepatitis B Virus Replication by Cyclin Docking Motifs in Core Protein. Journal of Virology, 2021, 95, .	3.4	17
9	Characterization and Application of Precore/Coreâ€Related Antigens in Animal Models of Hepatitis B Virus Infection. Hepatology, 2021, 74, 99-115.	7.3	19
10	PAG-YOLO: A Portable Attention-Guided YOLO Network for Small Ship Detection. Remote Sensing, 2021, 13, 3059.	4.0	32
11	Understanding HBcrAg components improves the interpretation of clinical HBcrAg assay results. Journal of Hepatology, 2021, 75, 997-998.	3.7	4
12	Ship Detection via Dilated Rate Search and Attention-Guided Feature Representation. Remote Sensing, 2021, 13, 4840.	4.0	2
13	The hepatitis B virus polymerase. The Enzymes, 2021, 50, 195-226.	1.7	5
14	Salient Ship Detection via Background Prior and Foreground Constraint in Remote Sensing Images. Remote Sensing, 2020, 12, 3370.	4.0	12
15	Serum HBV RNA composition dynamics as a marker for intrahepatic HBV cccDNA turnover. Journal of Medical Virology, 2020, 92, 935-937.	5.0	3
16	Involvement of Host ATR-CHK1 Pathway in Hepatitis B Virus Covalently Closed Circular DNA Formation. MBio, 2020, 11, .	4.1	30
17	Role of Hepatitis B virus capsid phosphorylation in nucleocapsid disassembly and covalently closed circular DNA formation. PLoS Pathogens, 2020, 16, e1008459.	4.7	41
18	Revisiting Hepatitis B Virus: Challenges of Curative Therapies. Journal of Virology, 2019, 93, .	3.4	92

#	Article	IF	CITATIONS
19	Secretion of empty or complete hepatitis B virions: envelopment of empty capsids versus mature nucleocapsids. Future Virology, 2019, 14, 95-105.	1.8	9
20	A global scientific strategy to cure hepatitis B. The Lancet Gastroenterology and Hepatology, 2019, 4, 545-558.	8.1	342
21	Cell and Animal Models for Studying Hepatitis B Virus Infection and Drug Development. Gastroenterology, 2019, 156, 338-354.	1.3	76
22	HIV–HBV and HIV–HCV Coinfection and Liver Cancer Development. Cancer Treatment and Research, 2019, 177, 231-250.	0.5	49
23	Hepatitis B Virus Core Protein Dephosphorylation Occurs during Pregenomic RNA Encapsidation. Journal of Virology, 2018, 92, .	3.4	52
24	A research agenda for curing chronic hepatitis B virus infection. Hepatology, 2018, 67, 1127-1131.	7.3	70
25	Common and Distinct Capsid and Surface Protein Requirements for Secretion of Complete and Genome-Free Hepatitis B Virions. Journal of Virology, 2018, 92, .	3.4	66
26	Multiple roles of core protein linker in hepatitis B virus replication. PLoS Pathogens, 2018, 14, e1007085.	4.7	39
27	Host-regulated Hepatitis B Virus Capsid Assembly in a Mammalian Cell-free System. Bio-protocol, 2018, 8, .	0.4	4
28	Capsid Phosphorylation State and Hepadnavirus Virion Secretion. Journal of Virology, 2017, 91, .	3.4	48
29	In Vitro Assays for RNA Binding and Protein Priming of Hepatitis B Virus Polymerase. Methods in Molecular Biology, 2017, 1540, 157-177.	0.9	6
30	Identification of an Intermediate in Hepatitis B Virus Covalently Closed Circular (CCC) DNA Formation and Selective CCC DNA Detection. Journal of Virology, 2017, 91, .	3.4	61
31	Mapping of Functional Subdomains in the Terminal Protein Domain of Hepatitis B Virus Polymerase. Journal of Virology, 2017, 91, .	3.4	13
32	Complete and Incomplete Hepatitis B Virus Particles: Formation, Function, and Application. Viruses, 2017, 9, 56.	3.3	207
33	Cell-Free Hepatitis B Virus Capsid Assembly Dependent on the Core Protein C-Terminal Domain and Regulated by Phosphorylation. Journal of Virology, 2016, 90, 5830-5844.	3.4	71
34	Minicircle HBV cccDNA with a Gaussia luciferase reporter for investigating HBV cccDNA biology and developing cccDNA-targeting drugs. Scientific Reports, 2016, 6, 36483.	3.3	24
35	Hepatitis B Virus Virology and Replication. Molecular and Translational Medicine, 2016, , 1-34.	0.4	16
36	Viral DNA-Dependent Induction of Innate Immune Response to Hepatitis B Virus in Immortalized Mouse Hepatocytes. Journal of Virology, 2016, 90, 486-496.	3.4	38

#	Article	IF	CITATIONS
37	Does Tyrosyl DNA Phosphodiesterase-2 Play a Role in Hepatitis B Virus Genome Repair?. PLoS ONE, 2015, 10, e0128401.	2.5	69
38	Regulation of Multiple Stages of Hepadnavirus Replication by the Carboxyl-Terminal Domain of Viral Core Protein in trans. Journal of Virology, 2015, 89, 2918-2930.	3.4	41
39	Hepatitis B Virus Covalently Closed Circular DNA Formation in Immortalized Mouse Hepatocytes Associated with Nucleocapsid Destabilization. Journal of Virology, 2015, 89, 9021-9028.	3.4	49
40	Alteration of Mature Nucleocapsid and Enhancement of Covalently Closed Circular DNA Formation by Hepatitis B Virus Core Mutants Defective in Complete-Virion Formation. Journal of Virology, 2015, 89, 10064-10072.	3.4	44
41	Hepadnavirus Genome Replication and Persistence. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a021386.	6.2	108
42	Unveiling the roles of HBV polymerase for new antiviral strategies. Future Virology, 2015, 10, 283-295.	1.8	36
43	Hepatitis B virus reverse transcriptase – Target of current antiviral therapy and future drug development. Antiviral Research, 2015, 123, 132-137.	4.1	70
44	Genomeâ€free hepatitis B virion levels in patient sera as a potential marker to monitor response to antiviral therapy. Journal of Viral Hepatitis, 2015, 22, 561-570.	2.0	69
45	Comparative Analysis of Hepatitis B Virus Polymerase Sequences Required for Viral RNA Binding, RNA Packaging, and Protein Priming. Journal of Virology, 2014, 88, 1564-1572.	3.4	35
46	Noncompetitive Inhibition of Hepatitis B Virus Reverse Transcriptase Protein Priming and DNA Synthesis by the Nucleoside Analog Clevudine. Antimicrobial Agents and Chemotherapy, 2013, 57, 4181-4189.	3.2	40
47	Protein-Primed Terminal Transferase Activity of Hepatitis B Virus Polymerase. Journal of Virology, 2013, 87, 2563-2576.	3.4	36
48	Maturation-Associated Destabilization of Hepatitis B Virus Nucleocapsid. Journal of Virology, 2013, 87, 11494-11503.	3.4	71
49	Hepatitis B virus reverse transcriptase: diverse functions as classical and emerging targets for antiviral intervention. Emerging Microbes and Infections, 2013, 2, 1-11.	6.5	79
50	Cyclin-Dependent Kinase 2 Phosphorylates S/T-P Sites in the Hepadnavirus Core Protein C-Terminal Domain and Is Incorporated into Viral Capsids. Journal of Virology, 2012, 86, 12237-12250.	3.4	63
51	<i>In Vitro</i> Epsilon RNA-Dependent Protein Priming Activity of Human Hepatitis B Virus Polymerase. Journal of Virology, 2012, 86, 5134-5150.	3.4	68
52	TP-RT Domain Interactions of Duck Hepatitis B Virus Reverse Transcriptase in <i>cis</i> and in <i>trans</i> during Protein-Primed Initiation of DNA Synthesis <i>In Vitro</i> . Journal of Virology, 2012, 86, 6522-6536.	3.4	13
53	A Theoretical Model for the Dynamic Structure of Hepatitis B Nucleocapsid. Biophysical Journal, 2011, 101, 2476-2484.	0.5	23
54	Phosphorylation State-Dependent Interactions of Hepadnavirus Core Protein with Host Factors. PLoS ONE, 2011, 6, e29566.	2.5	22

#	Article	IF	CITATIONS
55	Cryptic Protein Priming Sites in Two Different Domains of Duck Hepatitis B Virus Reverse Transcriptase for Initiating DNA Synthesis <i>In Vitro</i> . Journal of Virology, 2011, 85, 7754-7765.	3.4	16
56	Secretion of Genome-Free Hepatitis B Virus – Single Strand Blocking Model for Virion Morphogenesis of Para-retrovirus. PLoS Pathogens, 2011, 7, e1002255.	4.7	165
57	trans-Complementation of HBV rtM204I mutant replication by HBV wild-type polymerase. Virology, 2009, 388, 57-67.	2.4	1
58	An interdomain RNA binding site on the hepadnaviral polymerase that is essential for reverse transcription. Virology, 2009, 390, 130-138.	2.4	27
59	RNA-protein interactions in hepadnavirus reverse transcription. Frontiers in Bioscience - Landmark, 2009, Volume, 1606.	3.0	27
60	Hepatitis B virus–cell interactions and pathogenesis. Journal of Cellular Physiology, 2008, 216, 289-294.	4.1	88
61	Inhibition of Hepadnavirus Reverse Transcriptase-Îμ RNA Interaction by Porphyrin Compounds. Journal of Virology, 2008, 82, 2305-2312.	3.4	50
62	Reverse Transcriptase- and RNA Packaging Signal-Dependent Incorporation of APOBEC3G into Hepatitis B Virus Nucleocapsids. Journal of Virology, 2008, 82, 6852-6861.	3.4	63
63	Functional and Structural Dynamics of Hepadnavirus Reverse Transcriptase during Protein-Primed Initiation of Reverse Transcription: Effects of Metal Ions. Journal of Virology, 2008, 82, 5703-5714.	3.4	23
64	Regulation of Hepadnavirus Reverse Transcription by Dynamic Nucleocapsid Phosphorylation. Journal of Virology, 2007, 81, 1641-1649.	3.4	81
65	Deamination-Independent Inhibition of Hepatitis B Virus Reverse Transcription by APOBEC3G. Journal of Virology, 2007, 81, 4465-4472.	3.4	147
66	Formation of Hepatitis B Virus Covalently Closed Circular DNA: Removal of Genome-Linked Protein. Journal of Virology, 2007, 81, 6164-6174.	3.4	169
67	HIV–HBV and HIV–HCV Coinfection and Liver Cancer Development. Cancer Treatment and Research, 2007, , 241-252.	0.5	20
68	Hepatitis B Virus Reverse Transcriptase and ε RNA Sequences Required for Specific Interaction In Vitro. Journal of Virology, 2006, 80, 2141-2150.	3.4	82
69	Reverse transcription-associated dephosphorylation of hepadnavirus nucleocapsids. Proceedings of the United States of America, 2005, 102, 9020-9025.	7.1	113
70	Studying DHBV Polymerase by In Vitro Transcription and Translation. , 2004, 95, 259-270.		5
71	Requirement of Heat Shock Protein 90 for Human Hepatitis B Virus Reverse Transcriptase Function. Journal of Virology, 2004, 78, 13122-13131.	3.4	170
72	Therapy for chronic hepatitis B: the earlier, the better?. Trends in Microbiology, 2004, 12, 431-433.	7.7	9

#	Article	IF	CITATIONS
73	Heat Shock Protein 90-Independent Activation of Truncated Hepadnavirus Reverse Transcriptase. Journal of Virology, 2003, 77, 4471-4480.	3.4	35
74	Conditional Replication of Duck Hepatitis B Virus in Hepatoma Cells. Journal of Virology, 2003, 77, 1885-1893.	3.4	68
75	Duck Hepatitis B Virus Virion Secretion Requires a Double-Stranded DNA Genome. Journal of Virology, 2003, 77, 2287-2294.	3.4	47
76	In Vitro Reconstitution of Functional Hepadnavirus Reverse Transcriptase with Cellular Chaperone Proteins. Journal of Virology, 2002, 76, 269-279.	3.4	107
77	Role of p50/CDC37 in Hepadnavirus Assembly and Replication. Journal of Biological Chemistry, 2002, 277, 24361-24367.	3.4	51
78	Distinct Requirement for Two Stages of Protein-Primed Initiation of Reverse Transcription in Hepadnaviruses. Journal of Virology, 2002, 76, 5857-5865.	3.4	25
79	In Vitro Reconstitution of a Functional Duck Hepatitis B Virus Reverse Transcriptase: Posttranslational Activation by Hsp90. Journal of Virology, 2000, 74, 11447-11455.	3.4	91
80	RNA Signals That Control DNA Replication in Hepadnaviruses. Seminars in Virology, 1997, 8, 205-211.	3.9	22
81	Hepadnavirus assembly and reverse transcription require a multi-component chaperone complex which is incorporated into nucleocapsids. EMBO Journal, 1997, 16, 59-68.	7.8	300
82	Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1060-1064.	7.1	319
83	Mutagenesis of a Hepatitis B Virus Reverse Transcriptase Yields Temperature-Sensitive Virus. Virology, 1996, 222, 430-439.	2.4	46
84	[11] Expression and characterization of hepadnavirus reverse transcriptases. Methods in Enzymology, 1996, 275, 195-208.	1.0	45
85	Conserved Lysine Residues of Hepatitis B Virus Core Protein Are Not Required for Covalently Closed Circular DNA Formation. Journal of Virology, 0, , .	3.4	3